Colina Rosa

Application to Washoe County for a:

Tentative Subdivision Map

Prepared by:

Jason Gilles, P.E. TEC Civil Engineering Consultants 9480 Double Diamond Parkway Reno, Nevada 89521

John F. Krmpotic, AICP KLS Planning & Design Group

Dale Doerr, A.S.L.A. Manager, Landscape Architect 9222 Prototype Drive Reno, NV 89521

Prepared for:

Michael Richter Towne Development of Sacramento, Inc 11060 White Rock Road, Suite 150 Rancho Cordova, CA 95670

January 15, 2016

Table of Contents

Project Request1	
Property Location1	
and Use and Zoning2	
Summary of Design Features	
Design Exhibits	
Fencing Options	,
entative Map Findings1	0

Figures & Photos

Figure 1 - Vicinity Map	
Figure 2 - WC Master Plan	2
Figure 3 - Forest Area Plan	3
Figure 4 - WC Zoning Map	4
Figure 5 - Site Plan	5
Photos	6-7

Appendix A

Map Exhibits (8.5" x 11")

Illustrative Plan Civil Plans (4 sheets) Landscape Plans (2 sheets)

Application Materials

Washoe County Development Application Tentative Map – Supplemental Info Application Owner/Applicant Affidavit Proof of Property Tax Payment Title Report Landscape Water Use Calculations Assessor's Parcel Map Acknowledgment of Water Service Letter Application Service Charges (Fee Sheet)

Tetative Map Reports

Traffic Impact Report Preliminary Hydrology Report Preliminary Sewer Report Preliminary Geotechnical Report

Appendix B - Plan Sets:

Civil Plan and Landscape Plan Sets (6 sheets)

- 1: Preliminary Site Plan
- 2: Preliminary Grading Plans
- 3: Preliminary Utility Plan
- 4: Cross Sections

Landscape Architecture Plan Set (2 sheets)

- 5: Preliminary Landscape Plan
- 6:: Details & Notes

Project Requests

This application includes the following requests for the project:

a) Tentative Subdivision Map for 94 lots with a Common Open Space Development;

Property Location

The Colina Rosa site includes 2 parcels and 20.1 acres. The project site is located on My Rose Highway and adjacent to Edmonton Drive on the east. It is bordered by the county owned land on the west and a single family neighborhood on the south. (See Figure 1, Vicinity Map).

Current access to the site is not available, nor is it appropriate from My Rose Highway. Our sole access is being proposed on the extension of Butch Cassidy as low intensity residential street. Property to the north and east is owned by private parties. Property to the east directly across Edmonton is vacant land.

Figure 1 – Vicinity Map

Land Use & Zoning

The site has a Commercial land use regulation is the county master plan. It has a regulatory zone of Neighborhood Commercial (NC) as shown on Figure 3. This site is located in the Forest Area Plan and in the Mt Rose Scenic Highway Commercial Overlay District (MRSHOD) as shown on ht next page. NC zoning allows single family development of 5 dwellings per acre. So, there is no need to down zone the property to allow for single family

Figure 2 – County Master Plan

Figure 3 – Forest Area Plan (Character Management)

Colina Rosa

Figure 4 – County Zoning Map

Figure 5 - Overall Site Plan

Summary of Design Features

The project area is 20.1 acres portion on two parcels. There are 94 lots on 14.75 acres with 1.75 acres of open space. Project density is 4.68 dwellings per acre. Summary of features include:

- A Landscape Parkway along Butch Cassidy and Edmonton Drive -
- A 30' setback from the Mt Rose Highway with a trial and common area landscaping -
- The trail plan is intended to tie all of the cul-de-sacs together
- A wide range of fencing types as shown in the design exhibits below.

Butch Cassidy Extension

Facing west from Edmonton Drive

Colina Rosa

Facing north on Edmonton

View of site facing east on Mt Rose Highway

Design Exhibits

Fencing Options

Fencing along Mt Rose Highway

Split Rail Fencing along Butch Cassidy

Fencing between lots & Side yards

Fencing between lots on north/south slopes

Tentative Map Findings:

Washoe County Code Section 110.608.25 requires that all of the following findings be made to the satisfaction of the Washoe County Planning Commission before granting approval of the Tentative Map request.

1) Plan Consistency. That the proposed map is consistent with the Master Plan and any specific plan.

The proposed subdivision map meets all of the pertinent goals and policies of the Master Plan, and the Forest Area Plan. The project falls under the allowable density established in the Area Plan and complies with policy F.3.5 which excludes residential uses in the commercial regulatory zones of the Forest Area Plan from any special use permit requirements.

2) Design or Improvement. That the design or improvement of the proposed subdivision is consistent with the Master Plan and any specific plan.

The proposed map meets all of the density, lot size and opens space criteria of the Master Plan, and the Forest Area Plan. Specifically, the proposed development is below the allowable density of 5 units per acre of the NC zoning and master plan. Also, the proposed subdivision complies with the Common Open Space criteria for pedestrian access, open space, community amenities, etc.

3) Type of Development. That the site is physically suited for the type of development proposed.

The proposed subdivision appears to be well suited to the site as reflected in all of the technical products including the lot sizes, access, and grading. The site appears to be physically suited for the type of development proposed.

4) Availability of Services. That the subdivision will meet the requirements of Article 702, Adequate Public Facilities Management System.

The subdivision does meet all of the requirements of Article 702, Adequate Public Facilities Management System.

5) Fish or Wildlife. That neither the design of the subdivision nor any proposed improvements is likely to cause substantial environmental damage, or substantial and avoidable injury to any endangered plant, wildlife or their habitat.

Most of the off-site infrastructure needs have been constructed. The improvements will not cause substantial environmental damage or substantial and avoidable injury to any endangered plant, wildlife or their habitat. There is no known habitat on the site. The site is covered with dense sagebrush, and dense Bitterbrush and large boulders.

6) Public Health. That the design of the subdivision or type of improvement is not likely to cause significant public health problems.

The design of the subdivision and improvements will not cause significant public health problems because most of the infrastructure is already in place. Dust control related to grading will be the most obvious public health issue which is tightly regulated with dust control permitting. Additionally, the proposed amenities such as pedestrian trails, landscaping and common area will enhance the aesthetic and recreational value of the immediate neighborhood.

7) Easements. That the design of the subdivision or the type of improvements will not conflict with easements acquired by the public at large for access through, or use of property within, the proposed subdivision.

The subdivision as designed has taken into consideration and accommodated existing public easements for access through and use of the property.

8) Access. That the design of the subdivision provides any necessary access to surrounding, adjacent lands and provides appropriate secondary access for emergency vehicles.

There is a public park immediately east of the subject property and there are federal lands further to the northeast of the property. The design of the subdivision will provide pedestrian and emergency vehicle access to these surrounding uses.

9) Dedications. That any land or improvements to be dedicated to the County is consistent with the Master Plan.

All of the roadways will be dedicated to the county. The trails and common area will remain under the ownership of the Homeowner's Association. All sewer improvements will be dedicated to Washoe County as well.

10) Energy. That the design of the subdivision provides, to the extent feasible, for future passive or natural heating or cooling opportunities in the subdivision.

To the extent possible, the design of the subdivision provides for future passive or natural heating or cooling opportunities. The layout is very much governed by the topographic conditions on the site which is the form of a "tilted plane" that averages about 7% grade.

Appendix A

Map Exhibits (8.5" x 11")

Illustrative Plan Civil Plans (4 sheets) Landscape Plans (2 sheets)

Application Materials

Washoe County Development Application Tentative Map – Supplemental Info Application Owner/Applicant Affidavit Proof of Property Tax Payment Title Report Request to Reserve New Street Names Landscape Water Use Calculations Assessor's Parcel Map Acknowledgment of Water Service Letter Application Service Charges (Fee Sheet)

Tetative Map Reports

Traffic Impact Report Preliminary Hydrology Report Preliminary Sewer Report Preliminary Geotechnical Report

T

COLINA ROSA TENTATIVE MAP

1) ALL PROPOSED SANITARY SEWER MAINS TO BE OWNED AND MAINTAINED BY WASHOE COUNTY 2) ALL PROPOSED WATER MAINS TO BE OWNED AND MAINTAINED BY TMWA

ALL PROPOSED STORM DRAIN FACILITIES WITHIN THE RIGHT OF WAY TO OWNED AND MAINTAINED BY WASHOE COUNTY

.

TENTATIVE MAP PRELIMINARY LANDSCAPE PLAN SHEET 5 of 6

DATE: SCALE: JOB #:

LUMOS

LOW GROUND COVERS AND PERENNIALS.

SCREEN PLANTINGS

ENTRY ENLARGEMENT

4. Perovskia atriplicifolia – Russian Sage 5. Caryopteris clandonensis - Bluebeard 6. Artemesia tridentata v. vasevana - Mountain Big Sage Interior common open space plants, with drip irrigation

Trees

Colina Rosa Plant List

1. Pinus nigra – Austrian Pine

2. Pinus jeffreyi - Jeffrey Pine

3. Pinus sylvestri s- Scotch Pine

5. Prunus virginiana – Purple Chokecherry

2. Buddleia alternifolia - Butterfly Bush

3. Rhus typhina - Staatiom Sumar

4. Malus sp. – Crabappie

1. Caragana sp. – Peashrub

irrigatio

Trees

Shrubs

Screen plantings at the Mt. Rose Highway, Edmonton Drive and Butch Cassidy Drive, with drip

- 1. Pinus fiewis 'Vanderwolf' Vanderwolf Pine
- 2. Acer rubrum Red Maple
- 3. Koelreuteria paniculata Golden Rain Tree & Calocedrus decurrens - Incense Cedar

- Shrub
- 1. Forestiera neomexicana New Mexico Prive
- 2. Forsythia intermedia Forsythia
- 3. Panicum virgatum Switch Grass
- 4. Viburnum dentatum Arrowood
- 5. Yucca filamentosa Adam's Needle
- 6. Lavendula angustifolia Lavender
- 7. Ribes aureum Golden Current
- 8. Symphoricarpos albus Snowberry

Common area plantings at disturbed areas around the project perimeter indges, without drip irrigation rol and lower fla hasis is placed on plants for erosion Plants will be seeded in these areas will a drill seeder and hydroseeded in the less rocky area

 	 	 	the second	a monte college	CORF.OF 0	1.01.00.00.00.000	

Botanical Name	Common Name/Variety
Achillea millefolium	Yarrow
Achnatherum occidentalis	Western needlegrass
Artemisia tridentata ssp vaseyana	Mtn. sagebrush
Bromus carintaus	California broine
Elymus elymoides	Blue wildrye 'Stanislaus'
Elymus trachycaulus	Slender wheatgrass, 'Pryor'
Ericameria nauseosa	Rubber rabbitbrush
Poa secunda	Sandberg bluegrass Sherman
Purshia tridentata	Bitterbrush

All dead plants and branches to be removed from these areas and the cheatgrass eliminated before the seeding completed in the late fail. Disturbed areas to be lossened and left in a rough condition. Cleared brush and topsoil from the home lots to be re-used for re-vegetation of the disturbed open spaces

- Water Conservation compliance with Section 110.412.20
- 1. The design proposes no lawn and the use of water conserving plant material

2. Plants to be grouped in hydrozones for water use.

- 3. Mulches to be used include screened on-site rock or imported rock types for slopes.
- ents to be included into the plant pits in final design with soil testing. ntial Use types compliance with Section 110.412.35
- I. At the perimeter of the subdivision a minimum of 1 tree per 50 lineal feet is shown on the plan for
- terials and collector street
- Planting Standards compliance with Section 110.412.60

1. Climate adapted plants are shown in the planting legend.

2. Plants are compatible with the surrounding area – native plants are proposed to be extended into the size at the ML. Rose Hwy, since they exist out to the edge of the right of way, south ide of the highway. Planting types along both Edmonton and Butch Casuly Drives are similar to those existing near the site, which include both native and compatibility pays with vergreen accents.

- 3. Planting water use zones are compatible with the upland type plants in the area.
- 4. Evergreen trees proposed to be one-half 7 ft. tall and the remainder 5 ft. tall.
- 5. Deciduous trees proposed to be one-half 2" caliper and the remainder 1" caliper sizes. 6. Shrubs proposed to be a mixture of sizes between #1 and #5, depending on plant type, growth rate and availab
- 7. Irrigation will be automatic, with main lines, valves and controllers for common area landscape
- 8. Common area landscape maintenance to be the responsibility of the HOA.

Compliance with Article 204 - Forest Area Section 110 204 05 /

1. Setback - A setback of 30 ft. is shown along the north side of the site, adjacent to the Mt. Rose Highway. The proposed fence with pilasters is 6 ft. tall at the edge of the setback.

2. The setback area is landscaped per the plan and section A-A. Landscaping to be similar to that on the north side of the Mt. Rose Hwy

ENTRY SIGN ON BOULDER

3-RAIL SPLIT CEDAR FENCING 3.5 FT. TALL AT ENTRY AREAS

FENCING BETWEEN LOTS AND SIDE YARDS

FENCING BETWEEN LOTS ON NORTH/SOUTH SLOPES

FENCING WITH PILASTERS ALONG MT. ROSE HWY

TENTATIVE MAP DETAILS AND NOTES SHEET 6 of 6

SIGN

-SWALLER BOULDERS

Staff Assigned Case No.: _____

Washoe County Development Application

Project Information					
Project Name (commercial/indus	Project Name (commercial/industrial projects only)				
Colina Rosa	· · · · · · · · · · · · · · · · · · ·				
Project					
Description: a 94 lot single fa	amily project with a	common open space develop	ment		
Project Address: 3800 Mount	Rose Highway & 5	185 Edmonton Drive			
Project Area (acres or square fe	et): 20.1 acres				
	Location I	nformation			
Project Location (with point of re	ference to major cross	streets AND area locator):			
The 20.1 acre site is lcate at th	e southwest corner of	of the intersection of Edmonton E	Dive with the Mt		
Rose Highway		0			
Assessor's Parcel No(s):	Parcel Acreage:	Assessor's Parcel No(s):	Parcel Acreage:		
049-402-02	10.95 acres				
049-402-07	9.18 acres				
Section(s)/Township/Range:	30 T18 R20				
Indicate any previous Washo	e County approval	s associated with this applicat	ion:		
Case Nos. Not Kilowii	Applicant I	nformation			
Property Owner: Professional Consultant:					
Name: Bernard Trust		Name ⁻ KI S Planning & Design			
Address: 2500 F Lakeridge St	ores Drive	Address: 9480 Double Diamon	d Parkway		
Reno NV	Zip: 89519	Reno NV	Zip: 89521		
Phone: 775 826 4896	Fax: N/A	Phone: 852-7606	Eax: 852-7609		
Email: Dabdab2500@aol.co	m	Email: : iohnk@klsdesigngr	oup.com		
Cell: N/A Other: N/	A	Cell: 857-7710 Other: N	/A		
Contact Person: Donald Berna	ard	Contact Person: John Krmpotio	c. AICP		
Applicant/Developer:		Other Persons to be Contact	ed:		
Name: Towne Development o	f Sacramento, Inc.	Name: TEC Engineering			
Address: : 11060 White Rock	Road, Suite 150	Address: 9480 Double Diamon	d Parkway		
Sacramento, CA	95670	Reno, NV	Zip: 89521		
Phone: 916 262-8820	Fax: N/A	Phone: 775-352-7800	Fax: 852-7609		
Email: mrichter@hbtsac.cor	<u>n</u>	Email: jgilles@tecreno.com			
Cell: 760 -717-7221	Other: N/A	Cell: 775-846-0164	Other: N/A		
Contact Person: Michael Richt	ter	Contact Person: Jason Gilles			
	For Office	Use Only			
Date Received:	Initial:	Planning Area:			
County Commission District:					
CAB(s):		Land Use Designation(s):			

Tentative Subdivision Map Application Supplemental Information

(All required information may be separately attached)

Chapter 110 of the Washoe County Code is commonly known as the Development Code. Specific references to tentative subdivision maps may be found in Article 608, Tentative Subdivision Maps.

1. What is the location (address or distance and direction from nearest intersection)?

3800 Mount Rose Highway & 5185 Edmonton Drive. The site is bound by Butch Cassidy Drive, Edmonton Drive, and the Mt Rose Highway.

2. What is the subdivision name (proposed name must not duplicate the name of any existing subdivision)?

Colina Rosa

3. Density and lot design:

a. Acreage of project site	20.1
b. Total number of lots	94
c. Dwelling units per acre	4.68 gross density
d. Minimum and maximum area of proposed lots	Min is 5,260 sf, 8,680 is max sf
e. Minimum width of proposed lots	60 feet
f. Average lot size	6,830 sf

4. Utilities:

a. Sewer Service	Washoe County
b. Electrical Service	NV Energy
c. Telephone Service	ATT
d. LPG or Natural Gas Service	NV Energy
e. Solid Waste Disposal Service	Waste Management
f. Cable Television Service	Charter Communications
g. Water Service	TMWA

- 5. For common open space subdivisions (Article 408), please answer the following:
 - a. Acreage of common open space:

1.75 acres which is 8.7% of the site

b. Development constraints within common open space (slope, wetlands, faults, springs, ridgelines):

There are no wetlands, faults, springs, ridgelines, or water features on the site. One feature that is most constraining is the 6 to 7% slope that is fairly constant from one end of the site to the other. It does create more challenges for grading the site.

c. Range of lot sizes (include minimum and maximum lot size):

Lots sizes range from 5,260 sf to 8,680 sf

d. Average lot size:

The average is 6,830 sf

- e. Proposed yard setbacks if different from standard:
 - Front = 15' Side = 5' Rear = 20'
- f. Justification for setback reduction or increase, if requested:

The code allows 5 du per acre and the relationship to lot size and proposed setbacks are typical for a project of this design, character, and density. The NC code setbacks appear to be established if a commercial use was being proposed in the zone.

g. Identify all proposed non-residential uses:

The only use is an attached single family project. There is a walking trail located in the common area adjacent to the highway.

h. Improvements proposed for the common open space:

There is a walking trail that will be designed at minimum grades to accommodate all types of trail users and common area landscaping. The idea in our trial plan was to have a connection to all of the cul de sacs for good circulation thru the neighborhood.

i. Describe or show on the tentative map any public or private trail systems within common open space of the development:

Please see the attached trail on the tentative map.

j. Describe the connectivity of the proposed trail system with existing trails or open space adjacent to or near the property:

The trail is established in the common area and open for public use. It will connect to each cul de sac and to the exterior of the property. The intent is to have good integration in the neighborhood and to the exterior.

k. If there are ridgelines on the property, how are they protected from development?

There are not any ridgelines on the site and thus do not need to be protected by the project.

I. Will fencing be allowed on lot lines or restricted? If so, how?

Solid perimeter fences will be allowed on lot lines. It will be 6' privacy fence on side yards and 6' open view fence on the back of slopes. We have a split rail along Butch Cassidy to create an open feel.

m. Identify the party responsible for maintenance of the common open space:

There will be a Landscape Maintenance Association or a Home Owners Association former	Ł
that will be responsible for maintenance of the common area.	

6. Is the project adjacent to public lands or impacted by "Presumed Public Roads" as shown on the adopted April 27, 1999 Presumed Public Roads (see Washoe County Public Works website at <u>http://www.washoecounty.us/pubworks/engineering.htm</u>). If so, how is access to those features provided?

This is not applicable as the site is NOT located adjacent to public federal lands that are intended for protection or impacted by "presumed public roads". It is next to land owned by Washoe County.

7. Is the parcel within the Truckee Meadows Service Area?

Yes	🖵 No
-----	------

8. Is the parcel within the Cooperative Planning Area as defined by the Regional Plan?

Yes	🐺 No	If yes, within what city?

9. Will a special use permit be required for utility improvement? If so, what special use permits are required and are they submitted with the application package?

There are no SUP's required for the project. Specifically, the site is located in the MRSHOD district of the Forest Area Plan. Policy.3.5 of that plan specifically excludes an SUP for residential projects.

10. Has an archeological survey been reviewed and approved by NV State Historic Preservation Office (SHPO) on the property? If yes, what were the findings?

There was no requirement for an archeological survey. Thus, no such survey has been prepared as there is no indication of cultural resources on site.

11. Indicate the type and quantity of water rights the application has or proposes to have available:

a. Permit #	N/A	acre-feet per year
b. Certificate #	N/A	acre-feet per year
c. Surface Claim #	N/A	acre-feet per year
d. Other #	N/A	acre-feet per year

e. Title of those rights (as filed with the State Engineer in the Division of Water Resources of the Department of Conservation and Natural Resources):

Water rights will be purchased from TMWA as the site is located in their service territory.

12. Describe the aspects of the tentative subdivision that contribute to energy conservation:

Best practices by using building materials for energy efficient design and construction. Building orientation for good solar exposure is proposed where site constraints allow such flexibility.

13. Is the subject property in an area identified by the Department of Planning & Development as potentially containing rare or endangered plants and/or animals, critical breeding habitat, migration routes or winter range? If so, please list the species and describe what mitigation measures will be taken to prevent adverse impacts to the species:

The site is not in an area containing rare or endangered plants or animals, critical breeding habitat, migration routes or winter range. Therefore, no mitigation measures are being required or proposed.

14. If private roads are proposed, will the community be gated? If so, is a public trail system easement provided through the subdivision?

The project will contain only public roads that meet county standards, However, it will not be gated.

15. Is the subject property located adjacent to an existing residential subdivision? If so, describe how the tentative map complies with each additional adopted policy and code requirement of Article 434, Regional Development Standards within Cooperative Planning Areas and all of Washoe County, in particular, grading within 50 and 200 feet of the adjacent developed properties under 5 acres and parcel matching criteria:

The project is not located adjacent to a Cooperative Planning Area, thus the article does not apply.

16. Are there any applicable policies of the adopted area plan in which the project is located that require compliance? If so, which policies and how does the project comply?

We are not aware of any policies in the Forest Area Plan that require compliance.

17. Are there any applicable area plan modifiers in the Development Code in which the project is located that require compliance? If so, which modifiers and how does the project comply?

There are no applicable Forest Area Plan modifiers that require compliance.

18. Will the project be completed in one phase or is phasing planned? If so, please provide that phasing plan:

This project will be completed in roughly 4 phases consisting of 20 to 25 lots per phase for a total of 94 lots.

19. Is the project subject to Article 424, Hillside Development? If yes, please address all requirements of the Hillside Ordinance in a separate set of attachments and maps.

	If ves, include a separate set of attachments and maps.

20. Is the project subject to Article 418, Significant Hydrologic Resources? If yes, please address Special Review Considerations within Section 110.418.30 in a separate attachment.

🛛 Yes	🗆 No	If yes, include separate attachments.

Grading

Please complete the following additional questions if the project anticipates grading that involves: (1) Disturbed area exceeding twenty-five thousand (25,000) square feet not covered by streets, buildings and landscaping; (2) More than one thousand (1,000) cubic yards of earth to be imported and placed as fill in a special flood hazard area; (3) More than five thousand (5,000) cubic yards of earth to be imported and placed as fill; (4) More than one thousand (1,000) cubic yards to be excavated, whether or not the earth will be exported from the property; or (5) If a permanent earthen structure will be established over four and one-half (4.5) feet high:

21. How many cubic yards of material are you proposing to excavate on site?

There will be minimal grading needed for this project. Our prelim Grading Plan includes about 85,000 yards of excavation material. See below.

22. How many cubic yards of material are you exporting or importing? If exporting of material is anticipated, where will the material be sent? If the disposal site is within unincorporated Washoe County, what measures will be taken for erosion control and revegetation at the site? If none, how are you balancing the work on-site?

There may be export as there is a maximum of 11' of cut and a maximum of 8' of fill are proposed with this grading plan. There is no site identified at this time for export. However, our civil engineers have expressed that they believe they can balance the site with refined engineering. All disturbed areas on the site will be seeded or hydro seed as a minimum and many areas include plantings and landscaping

23. Can the disturbed area be seen from off-site? If yes, from which directions, and which properties or roadways? What measures will be taken to mitigate their impacts?

The intent is that disturbed area will not be visible as they are going to reseeded and/or landscaped depending on location. See the landscape plan and the detail of the plan.

24. What is the slope (Horizontal:Vertical) of the cut and fill areas proposed to be? What methods will be used to prevent erosion until the revegetation is established?

There is a maximum of 3:1 slope that includes rock mulch, evergreen trees, street trees, boulders in groupings, and native shrubs in these sloped areas.

25. Are you planning any berms and, if so, how tall is the berm at its highest? How will it be stabilized and/or revegetated?

There is a small berm proposed along the mt rose highway that will be reseeded and replanted. Its has a maximum height of 3'

26. Are retaining walls going to be required? If so, how high will the walls be, will there be multiple walls with intervening terracing, and what is the wall construction (i.e. rockery, concrete, timber, manufactured block)? How will the visual impacts be mitigated?

Yes there will be rockery walls and or retaining walls per the grading plan. These are multiple walls with terracing and landscape slopes to mitigate visual impacts. Wall heights vary throughout the site as shown on the grading plan.

27. Will the grading proposed require removal of any trees? If so, what species, how many, and of what size?

There are no trees being removed with the proposed project. It is entirely sage and bitterbrush

28. What type of revegetation seed mix are you planning to use and how many pounds per acre do you intend to broadcast? Will you use mulch and, if so, what type?

Re-vegetation is being proposed that will include a seed mix shown on the landscape plan. Hydromulch will be applied as well.

29. How are you providing temporary irrigation to the disturbed area?

There is no need for temporary irrigation due to time of year planting for reseeded area.

30. Have you reviewed the revegetation plan with the Washoe Storey Conservation District? If yes, have you incorporated their suggestions?

We have not provided the revegetation plan WSCD. We would be glad to do so in process if that is appropriate.

Tahoe Basin

Please complete the following additional questions if the project is within the Tahoe Basin:

31. Who is the Tahoe Regional Planning Agency (TRPA) project planner and what is his/her TRPA extension?

NI/A		
IN/A		

32. Is the project within a Planning & Plan (CP) area?

Yes	V No	If yes, which CP?
	~	

- 33. State how you are addressing the goals and policies of the Planning & Plan for each of the following sections:
 - a. Land Use:

N/A		

b. Transportation:

N/A

c. Conservation:

N/A

d. Recreation:

N/A				
	• minut			

e. Public Services:

N/A				

34. Identify where the development rights for the proposed project will come from:

N/A			

35. Will this project remove or replace existing housing?

Yes	V No	If yes, how many units?

36. How many residential allocations will the developer request from Washoe County?

None

37. Describe how the landscape plans conform to the Incline Village General Improvement District landscaping requirements:

Not applicable	

Property Owner Affidavit

HA KOA **Applicant Name:**

The receipt of this application at the time of submittal does not guarantee the application complies with all requirements of the Washoe County Development Code, the Washoe County Master Plan or the applicable area plan, the applicable regulatory zoning, or that the application is deemed complete and will be processed.

STATE OF NEVADA

COUNTY OF WASHOE

(please print name)

being duly sworn, depose and say that I am the owner* of the property or properties involved in this application as listed below and that the foregoing statements and answers herein contained and the information herewith submitted are in all respects complete, true and correct to the best of my knowledge and belief. I understand that no assurance or guarantee can be given by members of Planning and Development.

(A separate Affidavit must be provided by each property owner named in the title report.)

Assessor Parcel Number(s): 049-to2-0	2 4 49-402-03
Printed Nar	me <u>KARI Jern</u> son
Sign	ed Kau Alahina
Addre	ss 2710 ATASTOR WAL
	RENO, NU 89521
Subscribed and sworn to before me this day of ANUARY, 2016.	(Notary Stamp)
Canandre Line.	CASSANDRA FRANCE

Notary Public - State of Nevada Appointment Recorded in Washoe County No: 15-1309-2 - Expires April 7, 2019

Notary Public in and for said county and state

My commission expires: 4

*Owner refers to the following: (Please mark appropriate box.)

- 🖾 Owner
- Corporate Officer/Partner (Provide copy of recorded document indicating authority to sign.)
- Dever of Attorney (Provide copy of Power of Attorney.)
- Owner Agent (Provide notarized letter from property owner giving legal authority to agent.)
- Property Agent (Provide copy of record document indicating authority to sign.)
- Letter from Government Agency with Stewardship

Property Owner Affidavit

Applicant Name: Donald Bernard

The receipt of this application at the time of submittal does not guarantee the application complies with all requirements of the Washoe County Development Code, the Washoe County Master Plan or the applicable area plan, the applicable regulatory zoning, or that the application is deemed complete and will be processed.

1 Dora	L BERNARL	
COUNTY OF WASHOE		
STATE OF NEVADA)		

being duly sworn, depose and say that I am the owner* of the property or properties involved in this application as listed below and that the foregoing statements and answers herein contained and the information herewith submitted are in all respects complete, true and correct to the best of my knowledge and belief. I understand that no assurance or guarantee can be given by members of Planning and Development.

(A separate Affidavit must be provided by each property owner named in the title report.)

Assessor Parcel Number(s): 049-402-02	
Printed Name DONXLd BERNERD	
Signed	
Address 2500 East Lakeridge	shores
Reno NV 89519	
Subscribed and sworn to before me this day of (Notary Stamp)	******
Notary Public in and for said county and state Notary Public in and for said county and state	la. Ity 118
My commission expires: $\frac{3}{37}$	112234 P
*Owner refers to the following: (Please mark appropriate box.)	

- Corporate Officer/Partner (Provide copy of recorded document indicating authority to sign.)
- Dever of Attorney (Provide copy of Power of Attorney.)
- Owner Agent (Provide notarized letter from property owner giving legal authority to agent.)
- Property Agent (Provide copy of record document indicating authority to sign.)
- Letter from Government Agency with Stewardship
Washoe County Treasurer P.O. Box 30039, Reno, NV 89520-3039 ph: (775) 328-2510 fax: (775) 328-2500

Washoe County Treasurer Tammi Davis

Bill Detail

 \int

Back to Account Detail	I Change of Address	Print this Page
Washoe County Parcel Informa	tion	
Parcel ID	Status	Last Update
04940207	Active	1/15/2016 2:09:56 AM
Current Owner: KAJ PROPERTIES II LLC PO BOX 19765 RENO, NV 89511	SITUS: 5185 EDMONTO WCTY NV	DN DR
Taxing District 6000	Geo CD:	
	Legal Description	

Township 18 Lot 2 SubdivisionName _UNSPECIFIED Range 20

Installments							
Period	Due Date	Tax Year	Tax	Penalty/Fee	Interest	Total Due	
INST 1	8/17/2015	2015	\$0.00	\$0.00	\$0.00	\$0.00	
INST 2	10/5/2015	2015	\$122.10	\$10.98	\$0.00	\$133.08	
INST 3	1/4/2016	2015	\$3,174.45	\$158.72	\$0.00	\$3,333.17	
INST 4	3/7/2016	2015	\$3,174.44	\$0.00	\$0.00	\$3,174.44	
		Total Due:	\$6,470.99	\$169.70	\$0.00	\$6,640.69	

Tax Detail			
	Gross Tax	Credit	Net Tax
State of Nevada	\$666.20	\$0.00	\$666.20
Washoe County	\$5,453.83	\$0.00	\$5,453.83
Washoe County Sc	\$4,461.59	\$0.00	\$4,461.59
Sierra Fire Protection District	\$2,116.17	\$0.00	\$2,116.17
Truckee Mdw Ungr Water	\$2.48	\$0.00	\$2.48
Total Ta	x \$12,700.27	\$0.00	\$12,700.27

Payment History							
Tax Year	Bill Number	Receipt Number	Amount Paid	Last Paid			
2015	247560	B15.132510	\$3,174.45	10/23/2015			
2015	247560	B15.3294	\$3,176.93	7/22/2015			

Pay By Check

Please make checks payable to: WASHOE COUNTY TREASURER

Mailing Address: P.O. Box 30039 Reno, NV 89520-3039

Overnight Address: 1001 E. Ninth St., Ste D140 Reno, NV 89512-2845

Change of Address

All requests for a mailing address change must be submitted in writing, including a signature (unless using the online form).

To submit your address change online click here.

Address change requests may also be faxed to: (775) 328-2500

Address change requests may also mailed to: Washoe County Treasurer P O Box 30039 Reno, NV 89520-3039

The Washoe County Treasurer's Office makes every effort to produce and publish the most current and accurate information possible. No warranties, expressed or implied, are provided for the data herein, its use, or its interpretation. If you have any questions, please contact us at (775) 328-2510 or tax@washoecounty.us

Washoe County Treasurer Tammi Davis

Bill Detail

Back to Account Detail	Change of Address	Print this Page
Washoe County Parcel Information		
Parcel ID	Status	Last Update
04940202	Active	1/15/2016 2:09:56 AM
Current Owner: BERNARD TRUST, DONALD A & CAROLYI 2500 E LAKERIDGE SHORES RENO, NV 89519	SITU N K 3800 WCT	IS: MOUNT ROSE HWY Y NV
Faxing District 6000	Geo	CD:
Le	gal Description	h
Lot 1 Township 18 SubdivisionName _UN	SPECIFIED Range 20	

Installments							
Period	Due Date	Tax Year	Тах	Penalty/Fee	Interest	Total Due	
INST 1	8/17/2015	2015	\$0.00	\$0.00	\$0.00	\$0.00	
INST 2	10/5/2015	2015	\$0.00	\$0.00	\$0.00	\$0.00	
INST 3	1/4/2016	2015	\$0.00	\$0.00	\$0.00	\$0.00	
INST 4	3/7/2016	2015	\$1,308.38	\$0.00	\$0.00	\$1,308.38	
		Total Due:	\$1,308.38	\$0.00	\$0.00	\$1,308.38	

Tax Detail			
	Gross Tax	Credit	Net Tax
State of Nevada	\$397.33	(\$122.74)	\$274.59
Washoe County	\$3,252.68	(\$1,004.84)	\$2,247.84
Washoe County Sc	\$2,660.92	(\$822.03)	\$1,838.89
Sierra Fire Protection District	\$1,262.09	(\$389.89)	\$872.20
Truckee Mdw Ungr Water	\$1.48	\$0.00	\$1.48
Total Ta	ax \$7,574.50	(\$2,339.50)	\$5,235.00

Payment History							
Tax Year	Bill Number	Receipt Number	Amount Paid	Last Paid			
2015	247537	B15.109234	\$1,308.38	9/30/2015			
2015	247537	B15.15934	\$1,309.86	7/31/2015			
2015	247537	B15.175171	\$1,308.38	12/31/2015			

The Washoe County Treasurer's Office makes every effort to produce and publish the most current and accurate information possible. No warranties, expressed or implied, are provided for the data herein, its use, or its interpretation. If you have any questions, please contact us at (775) 328-2510 or tax@washoecounty.us

Pay By Check

Please make checks payable to: WASHOE COUNTY TREASURER

Mailing Address: P.O. Box 30039 Reno, NV 89520-3039

Overnight Address: 1001 E. Ninth St., Ste D140 Reno, NV 89512-2845

Change of Address

All requests for a mailing address change must be submitted in writing, including a signature (unless using the online form).

To submit your address change online <u>click here.</u>

Address change requests may also be faxed to: (775) 328-2500

Address change requests may also mailed to: Washoe County Treasurer P O Box 30039 Reno, NV 89520-3039

922 Prototype Dr. Reno, Nevada 89521 (775) 827-6111 • fax 827-6122

Prepared by: Dale Doerr

LANDSCAPE WATER USE CALCULATIONS Project Name: Colina Rosa Common Area (Preliminary) Date:1-14-16

Drip System:	assump 1 gallor (1/1 gal	otion: n per h . plant	our emitters - ; 2/5 gal. plant; 3/15 gal. plant; 4/24'' box plant)
	<u>no.of plants</u> = 1 x = 6 x = 392	340 335 75 ,535 4 3140 64 2960	1 gal shrubs (x1) 5 gal shrubs (x2) Evergreen trees (x3) 2" + Cal. trees (x4) drip emitters @ 1 gph hours (4 hours per day) gallons per day waterings (twice/week x 32 weeks) gallons per year
	392 / <u>325</u> = 1	2960 5851 . 206	total gallons per year gallons per acre foot acre feet per year

Lawn/Spray System

New Turf Area	× × =	0 2 32 0	Area (SF) Inches per Week Weeks per year acre feet per year
Existing Turf Area	× × /	0 2 32 0	Area (SF) Inches per Week Weeks per year acre feet per year
		0	acre feet per vear

Quality. Delivered.

January 12, 2016

Mr. Michael Richter Towne Development of Sacramento, Inc. 11060 White Rock Road, Suite 150 Rancho Cordova, CA 95670

RE: Colina Rosa, TMWA Work Order # 16-4781 Acknowledgement of Water Service

Dear Mr. Richter:

I have reviewed the plans for the above referenced development ("Project") as submitted to the Truckee Meadows Water Authority and have determined the Project is within the Truckee Meadows Water Authority's retail water service area. This letter constitutes an Acknowledgment of Water Service pursuant to NAC 445A.6666, and the Truckee Meadows Water Authority hereby acknowledges that Truckee Meadows Water Authority is agreeable to supplying water service to the Project, subject to applicant satisfying certain conditions precedent, including, without limitation, the dedication of water resources, approval of the water supply plan by the local health authority, the execution of a Water Service Agreement, payment of fees, and the construction and dedication of infrastructure in accordance with our rules and tariffs. This Acknowledgement does not constitute a legal obligation by Truckee Meadows Water Authority to supply water service to the Project, and is made subject to all applicable Truckee Meadows Water Authority Rules.

Review of conceptual site plans or tentative maps by Truckee Meadows Water Authority does not constitute an application for service, nor implies a commitment by Truckee Meadows Water Authority for planning, design or construction of the water facilities necessary for service. The extent of required off-site and on-site water infrastructure improvements will be determined by Truckee Meadows Water Authority upon receiving a specific development proposal or complete application for service and upon review and approval of a water facilities plan by the Because the NAC 445A Water System regulations are subject to local health authority. interpretation. Truckee Meadows Water Authority cannot guarantee that a subsequent water facility plan will be approved by the health authority or that a timely review and approval of the Project will be made. The Applicant should carefully consider the financial risk associated with committing resources to their project prior to receiving all required approvals. After submittal of a complete Application for Service, the required facilities, the cost of these facilities, which could be significant, and associated fees will be estimated and will be included as part of the Water Service Agreement necessary for the Project. All fees must be paid to Truckee Meadows Water Authority prior to water being delivered to the Project.

Truckee Meadows Water Authority is a not-for-profit, community-owned water utility, overseen by elected officials and citizen appointees from Reno, Sparks and Washoe County.

Page 2 January 12, 2016

Please call me at 834-8292 at your convenience if you have any questions.

Sincerely, Truckee Meadows Water Authority

stin

Keith Ristinen, P.E. Principal Engineer

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
INTRODUCTION STUDY AREA EXISTING AND PROPOSED LAND USES EXISTING AND PROPOSED ROADWAYS AND INTERSECTIONS	4 4 4
TRIP GENERATION	6
TRIP DISTRIBUTION AND ASSIGNMENT	7
EXISTING AND PROJECTED TRAFFIC VOLUMES	7
INTERSECTION CAPACITY ANALYSIS	14
SITE PLAN REVIEW	18
RECOMMENDATIONS	18
APPENDIX	19

LIST OF FIGURES

FIGURE 1 - VICINITY MAP	5
FIGURE 2 – TRIP DISTRIBUTION	8
FIGURE 3 - TRIP ASSIGNMENT	9
FIGURE 4 - EXISTING TRAFFIC VOLUMES	10
FIGURE 5 - EXISTING + PROJECT TRAFFIC VOLUMES	11
FIGURE 6 - 2025 BASE TRAFFIC VOLUMES	12
FIGURE 7 - 2025 BASE + PROJECT + TRAFFIC VOLUMES	13

COLINA ROSA TRAFFIC STUDY

EXECUTIVE SUMMARY

The proposed Colina Rosa development will be located in Washoe County, Nevada. The project site is located in the southwest corner of the Mt. Rose Highway/Edmonton Drive intersection. The project site is currently undeveloped land. The purpose of this study is to address the project's impact upon the adjacent street network. The Edmonton Drive and Wedge Parkway intersections with Mt. Rose Highway and Edmonton Drive/Butch Cassidy Drive intersection have been identified for capacity analysis for the existing, existing pus project, 2025 base, and 2025 base plus project scenarios.

The proposed Colina Rosa development will include the construction of a residential subdivision containing 94 single family dwelling units. The project is anticipated to generate 895 average daily trips with 71 trips occurring during the AM peak hour and 94 trips occurring during the PM peak hour.

Traffic generated by the proposed Colina Rosa development will have some impact on the adjacent street network. The following recommendations are made to mitigate project traffic impacts.

It is recommended that any required signing, striping or traffic control improvements comply with Nevada Department of Transportation and Washoe County requirements.

It is recommended that the Edmonton Drive/Butch Cassidy Drive intersection be improved as a four-leg intersection with stop sign control and a shared left turn-through-right turn lane at the new west approach.

It is recommended that Butch Cassidy Drive be constructed per Washoe County standards as a new two-lane roadway from Edmonton Drive to the project's west property line with a temporary turnaround.

It is recommended that the project access street intersections with Butch Cassidy Drive be constructed with stop sign control at the north approaches and single lanes at all approaches.

It is recommended that the interior streets/cul-de-sacs be constructed per Washoe County local street standards.

INTRODUCTION

STUDY AREA

The proposed Colina Rosa development will be located in Washoe County, Nevada. The project site is located in the southwest corner of the Mt. Rose Highway/Edmonton Drive intersection. Figure 1 shows the approximate location of the project site. The purpose of this study is to address the project's impact upon the adjacent street network. The Edmonton Drive and Wedge Parkway intersections with Mt. Rose Highway and the Edmonton Drive/Butch Cassidy Drive intersection have been identified for capacity analysis for the existing, existing pus project, 2025 base, and 2025 base plus project scenarios.

EXISTING AND PROPOSED LAND USES

The project site is currently undeveloped land. Adjacent properties generally include residential development to the north and south and undeveloped land to the east and west. The proposed Colina Rosa development will include the construction of a residential subdivision containing 94 single family dwelling units.

EXISTING AND PROPOSED ROADWAYS AND INTERSECTIONS

Mt. Rose Highway is a five-lane roadway with two through lanes in each direction and a center two-way left turn lane in the vicinity of the site. The speed limit transitions from 50 to 55 miles per hour approximately 325 feet east of Edmonton Drive. Roadway improvements generally include bike lanes with paved and graded shoulders on both sides of the roadway.

Wedge Parkway is a four-lane roadway with two through lanes in each direction north and south of Mt. Rose Highway. The speed limits is posted for 35 miles per hour. Roadway improvements include curb, gutter, sidewalk and bike lanes on both sides of the street and a raised center median.

Edmonton Drive is a two-lane roadway with one through lane in each direction south of Mt. Rose Highway. The speed limit is posted for 25 miles per hour. Roadway improvements generally include curb and gutter on both sides of the street and sidewalk on the east side of the street south of Butch Cassidy Drive.

Butch Cassidy Drive is a two-lane roadway with one through lane in each direction east of Edmonton Drive. The speed limit is posted for 25 miles per hour except near Galena High School where it is posted for 15 miles per hour. Roadway improvements include curb and gutter on both sides of the street and sidewalk on the south side of the street. The roadway will be extended west of Edmonton Drive with development of the project.

.

COLINA ROSA VICINITY MAP FIGURE 1 The Mt. Rose Highway/Wedge Parkway intersection is a signalized four-leg intersection with protected phasing for all left turn movements. The north and south approaches each contain one left turn lane, one through lane, and one right turn lane. The east approach contains dual left turn lane, two through lanes, and one right turn lane. The west approach contains dual left turn lanes, two through lanes, and one shared through-right turn lane.

The Mt. Rose Highway/Edmonton Drive intersection is an unsignalized three-leg intersection with stop control on the south Edmonton Drive approach. The east approach contains one left turn lane and two through lanes. The west approach contains one through lane and a shared through-right turn lane. The south approach contains one left turn lane and one right turn lane.

The Edmonton Drive/Butch Cassidy Drive intersection is an unsignalized three-leg intersection with stop control at the east Butch Cassidy Drive approach. The north approach contains one left turn lane and one through lane. The south approach contains one shared through-right turn lane. The east approach contains one shared left turn-right turn lane. The intersection will ultimately be a four-leg intersection with development of the project.

The site plan indicates that project access will be provided from five subdivision streets intersecting the new section of Butch Cassidy Drive. Project access will not be provided directly from Edmonton Drive. The five access intersections will operate as unsignalized three-leg intersections with stop control at the north approaches.

TRIP GENERATION

In order to assess the magnitude of traffic impacts of the proposed project on the key intersections, trip generation rates and peak hours had to be determined. Trip generation rates were obtained from the Ninth Edition of *ITE Trip Generation* (2012) for Land Use 210 "Single Family Detached Housing". The proposed Colina Rosa development will include the construction of a residential subdivision containing 94 single family dwelling units. Trips generated by the project were calculated for the peak hours occurring between 7:00 AM and 9:00 AM and 4:00 PM and 6:00 PM, which correspond to the peak hours of adjacent street traffic. Table 1 shows a summary of the average daily traffic (ADT) volume and peak hour volumes generated by the project.

TR	TABL LIP GENE	.E 1 ERATIOI	N											
AM PEAK HOUR PM PEAK HOUR														
LAND USE	ADT	IN	OUT	TOTAL	IN	OUT	TOTAL							
Single Family Housing (94 D.U.)	895	18	53	71	59	35	94							

The Colina Rosa development is anticipated to generate 895 average weekday trips with 71 trips occurring during the AM peak hour and 94 trips occurring during the PM peak hour.

TRIP DISTRIBUTION AND ASSIGNMENT

The distribution of project traffic to the key intersections was based on existing peak hour traffic patterns and the locations of attractions and productions in the area. Figure 2 shows the anticipated trip distribution. The peak hour trips shown in Table 1 were subsequently assigned to the key intersections based on the trip distribution. Figure 3 shows the trip assignment at the key intersections for the AM and PM peak hours.

EXISTING AND PROJECTED TRAFFIC VOLUMES

Figure 4 shows the existing traffic volumes at the key intersections during the AM and PM peak hours. The existing AM and PM peak hour traffic volumes at the key intersections were obtained from traffic counts taken in December of 2015 and January of 2016.

Figure 5 shows the existing plus project AM and PM peak hour traffic volumes at the key intersections. The existing plus project traffic volumes were obtained by adding the trip assignment volumes shown on Figure 3 to the existing traffic volumes shown on Figure 4.

Figure 6 shows the 2025 base traffic volumes at the key intersections during the AM and PM peak hours. The 2025 base traffic volumes were estimated by applying a 1.5% average annual growth rate to the existing traffic volumes. The growth rate was derived from ten-year historic traffic count data obtained from the Nevada Department of Transportation's (NDOT) Annual Traffic Report for count stations on Mt. Rose Highway.

Figure 7 shows the 2025 base plus project traffic volumes at the key intersections during the AM and PM peak hours. These traffic volumes were obtained by adding traffic volumes generated by the project to 2025 base traffic volumes.

N.T.S.

N.T.S.

SOLAEGU ENGINEERS LTD.

COLINA ROSA TRIP ASSIGNMENT FIGURE 3

SOLAEGUI ENGINEERS LTD.

N.T.S.

N.T.S.

SOLAEGUI ENGINEERS LTD.

> COLINA ROSA 2025 BASE PLUS PROJECT TRAFFIC VOLUMES FIGURE 7

INTERSECTION CAPACITY ANALYSIS

The key intersections were analyzed for capacity based on procedures presented in the 2010 *Highway Capacity Manual (HCM)*, prepared by the Transportation Research Board, for unsignalized and signalized intersections using the latest version of the Highway Capacity computer software.

The result of capacity analysis is a level of service (LOS) rating for each signalized intersection or unsignalized intersection minor movement. Level of service is a qualitative measure of traffic operating conditions where a letter grade "A" through "F", corresponding to progressively worsening traffic operation, is assigned to the intersection or minor movement.

The *Highway Capacity Manual* defines level of service for stop controlled intersections in terms of computed or measured control delay for each minor movement. Level of service is not defined for the intersection as a whole. The level of service criteria for unsignalized intersections is shown in Table 2.

LEVEL OF SERVICE O	TABLE 2 CRITERIA FOR UNSIGNALIZED INTERSECTIONS
LEVEL OF SERVICE	DELAY RANGE (SEC/VEH)
A	≤10
В	>10 and ≤15
С	>15 and ≤25
D	>25 and ≤35
Е	>35 and ≤50
F	>50

Level of service for signalized intersections is stated in terms of the average control delay per vehicle for a peak 15 minute analysis period. The level of service criteria for signalized intersections is shown in Table 3.

LEVEL OF SERVICE	TABLE 3 E CRITERIA FOR SIGNALIZED INTERSECTIONS
LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (SEC)
Α	≤10
В	>10 and <20
С	>20 and ≤35
D	>35 and ≤55
E	>55 and ≤80
F	>80

Table 4 shows a summary of the level of service and delay results at the key intersections for the existing, existing plus project, 2025 base, and 2025 base plus project scenarios. The capacity worksheets are included in the Appendix.

INTERSECT	ION LEV	TAI EL OF SI	BLE 4 ERVICE A	ND DEL	AY RESU	JLTS		
	EXIS	TING	EXIS + PRC	TING DJECT	2025	BASE	2025 + PRC	BASE DJECT
INTERSECTION/MOVEMENT	AM	PM	AM	PM	AM	PM	AM	PM
Mt. Rose/Wedge	C30.7	C27.9	C30.8	C28.1	C32.9	C29.6	C33.1	C29.9
Mt. Rose/Edmonton Westbound Left Northbound Left Southbound Left	B10.3 E39.0 B14.0	A9.8 E35.4 B11.3	B10.4 E44.6 C15.1	B10.1 E45.8 B11.6	B11.3 F71.3 C16.4	B10.5 F51.9 B12.1	B11.4 F87.2 C18.2	B11.0 F72.8 B12.5
Edmonton/Butch Cassidy (3-Leg) Westbound Left-Right Southbound Left	A8.8 A8.7	A8.3 A7.4	N/A N/A	N/A N/A	A9.0 A9.1	A8.5 A7.4	N/A N/A	N/A N/A
Edmonton/Butch Cassidy (4-Leg) Eastbound Left-Thru-Right Westbound Left-Thru-Right Northbound Left Southbound Left	N/A N/A N/A N/A	N/A N/A N/A N/A	D32:6 A9.7 A0.0 A8.7	B11.1 A9.3 A0.0 A7.4	N/A N/A N/A N/A	N/A N/A N/A N/A	E47.8 B11.0 A0.0 A9.1	B11.4 A9.5 A0.0 A7.4

Mt. Rose Highway/Wedge Parkway Intersection

The Mt. Rose Highway/Wedge Parkway intersection was analyzed as a signalized four-leg intersection for all scenarios. The intersection currently operates at LOS C with a delay of 30.7 seconds per vehicle during the AM peak hour and 27.9 seconds per vehicles during the PM peak hour. For the existing plus project volumes the intersection continues to operate at LOS C with delays slightly increasing to 30.8 seconds per vehicle during the AM peak hour and 28.1 seconds per vehicle during the PM peak hour. For the 2025 base volumes the intersection is anticipated to operate at LOS C with a delay of 32.9 seconds per vehicle during the AM peak hour and 29.6 seconds per vehicles during the PM peak hour. For the 2025 base plus project volumes the intersection continues to operate at LOS C with delays slightly increasing to 33.1 seconds per vehicle during the AM peak hour and 29.9 seconds per vehicle during the PM peak hour. The intersection was analyzed with the existing approach lanes and phasing for all scenarios.

Mt. Rose Highway/Edmonton Drive Intersection

The Mt. Rose Highway/Edmonton Drive intersection was analyzed as an unsignalized three-leg intersection with stop control at the south approach for all scenarios. The intersection minor movements currently operate at LOS B or better except for the northbound left turn movement which operates at LOS E during the AM and PM peak hours. For the existing plus project volumes the northbound left turn movement continues to operate at LOS E. For the 2025 base volumes the intersection minor movements are anticipated to operate at LOS C or better except for the northbound left turn movement which operates at LOS F during the AM and PM peak hours. For the 2025 base volumes the northbound left turn movement which operates at LOS F during the AM and PM peak hours. For the 2025 base plus project volumes the northbound left turn movement which operates at LOS F during the AM and PM peak hours. For the 2025 base plus project volumes the northbound left turn movement which operates at LOS F during the AM and PM peak hours. For the 2025 base plus project volumes the northbound left turn movement which operates at LOS F during the AM and PM peak hours. For the 2025 base plus project volumes the northbound left turn movement continues to operates at LOS F during the AM and PM peak hours. The intersection was analyzed with the existing approach lanes for all scenarios.

Traffic signal warrant 3 per the Manual on Uniform Traffic Control Devices (2009) was subsequently reviewed at the Mt. Rose Highway/Edmonton Drive intersection. Traffic signal warrant 3 is met for all scenarios based on the full minor street approach volume at the south leg. However, right turn vehicles are typically not included in the minor street approach volume if they enter the traffic stream with little delay. The warrant is not met if the right turn volume at the south leg is deducted from the minor street approach volume. In addition, peak hour warrant 3 should be applied only in unusual cases such as office complexes, manufacturing plants, industrial complexes, or other high-occupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time. The Manual on Uniform Traffic Control Devices has eight additional warrants that should be evaluated when considering the need for the installation of a traffic signal. The project is anticipated to add only 5 AM peak hour vehicles and 4 PM peak hour vehicles to the northbound left turn movement.

It should be noted that the northbound left turn movement currently operates at LOS F during the 30-minute period immediately prior to the adjacent high school's start time. This poor LOS operation is typical for some intersection movements near high schools. It is our understanding that there is some accident history at the Mt. Rose Highway/Edmonton Drive intersection but no students were involved. Parents of high school students have also expressed concern over the accident potential at the intersection. As previously discussed, the Mt. Rose Highway/Wedge Parkway intersection operates at LOS C which indicates the intersection has available traffic capacity. Departing high school drivers could therefore be routed to the Mt. Rose Highway/Wedge Parkway intersection for a protected left turn movement onto westbound Mt. Rose Highway.

The existing left turn pocket at the east approach of the Mt. Rose Highway/Edmonton Drive intersection was reviewed for storage and deceleration requirements. Approximately 200 feet of storage length is required for the existing plus project traffic volumes based on NDOT's unsignalized intersection criteria of providing three minutes of storage length. NDOT's access management standards also specify that 155 feet minimum and 235 feet desirable deceleration length also be provided based on the 50 mile per hour speed limit and 5-6% upgrade on Mt. Rose Highway. The existing left turn lane is striped with ± 375 feet of storage/deceleration/taper length and also contains over 400 feet of additional length within the center two-way left turn lane which will serve future traffic volumes.

SOLAEGUI ENGINEERS, LTD.

The need for an exclusive right turn lane at the west approach of the Mt. Rose Highway/ Edmonton Drive intersection was reviewed based on NDOT's access management standards. The access management standards indicate that an exclusive right turn deceleration lane is required based on the 55 mile per hour speed limit on Mt. Rose Highway. However, the project is anticipated to add only 2 AM peak hour vehicles and 6 PM peak hour vehicles to this movement. The intersection appears to be constructed with an NDOT Type 4 approach that provides a tapered right turn deceleration lane as well as a tapered right turn acceleration lane.

Edmonton Drive/Butch Cassidy Drive Intersection

The Edmonton Drive/Butch Cassidy Drive intersection was initially analyzed as an unsignalized three-leg intersection with stop control at the east approach for the existing and 2025 base scenarios. The intersection minor movements currently operate at LOS A during the AM and PM peak hours. For the 2025 base volumes the intersection minor movements operate at LOS A during the AM and PM peak hours. The intersection was analyzed with the existing approach lanes.

The intersection was ultimately analyzed as an unsignalized four-leg intersection with stop control at the east and west approaches for the existing plus project and 2025 base plus project volumes. For the existing plus project volumes the intersection minor movements are anticipated to operate at LOS B or better except for the eastbound movements which operates at LOS D during the AM peak hour. For the 2025 base plus project volumes the intersection minor movements operate at LOS B or better except for the eastbound movements which operates at LOS D during the AM peak hour. For the 2025 base plus project volumes the intersection minor movements operate at LOS B or better except for the eastbound movements which operates at LOS E during the AM peak hour. The intersection was analyzed with one shared left turn-through-right turn lane at the west approach.

It should be noted that the eastbound movements are anticipated to at LOS E for the existing plus project volumes and LOS F for the 2025 base plus project volumes during the 30-minute period immediately prior to the adjacent high school's start time. Again, this poor LOS operation is typical for some intersection movements near high schools. The poor level of service and delay for this movement will be contained on the new section of Butch Cassidy Drive.

It is recommended that the Edmonton Drive/Butch Cassidy Drive intersection be improved as a four-leg intersection with stop sign control and a shared left turn-through-right turn lane at the west approach.

SITE PLAN REVIEW

A copy of the preliminary site plan for the Colina Rosa development is included in this submittal. The site plan indicates that project access will be provided from five project access streets intersecting the new section of Butch Cassidy Drive west of Edmonton Drive. Project access will not be provided directly from Edmonton Drive. All access street intersections will operate with full turning movements. The five access streets will be cul-de-sacs serving between 18 and 20 lots each.

It is recommended that Butch Cassidy Drive be constructed as a new two-lane roadway from Edmonton Drive to the project's west property line with a temporary turnaround per Washoe County standards. It is recommended that the interior streets/cul-de-sacs be constructed per Washoe County local street standards. It is recommended that all project access street intersections with Butch Cassidy Drive be constructed with stop sign control at the north approaches and single lanes at all approaches.

RECOMMENDATIONS

Traffic generated by the proposed Colina Rosa development will have some impact on the adjacent street network. The following recommendations are made to mitigate project traffic impacts.

It is recommended that any required signing, striping or traffic control improvements comply with Nevada Department of Transportation and Washoe County requirements.

It is recommended that the Edmonton Drive/Butch Cassidy Drive intersection be improved as a four-leg intersection with stop sign control and a shared left turn-through-right turn lane at the west approach.

It is recommended that Butch Cassidy Drive be constructed per Washoe County standards as a new two-lane roadway from Edmonton Drive to the project's west property line with a temporary turnaround.

It is recommended that the project access street intersections with Butch Cassidy Drive be constructed with stop sign control at the north approaches and single lanes at all approaches.

It is recommended that the interior streets/cul-de-sacs be constructed per Washoe County local street standards.

APPENDIX

•

SOLAEGUI ENGINEERS, LTD.

19

.

_

Project: New Project Alternative: Alternative 1						Ope Analysi	n Date: s Date:	1/6/20 1/6/20	16 16
	Avera	ige Daily	Trips	AM Adjace	Peak Ho nt Street	ur of t Traffic	PM I Adjace	Peak Ho nt Stree	ur of Traffic
ITE_Land Use	Enter	Exit	<u>Total</u>	Enter		Total	Enter	<u>Exit</u>	_Total
210 SFHOUSE 1	448	447	895	18	53	71	59	35	94
94 Dwelling Units									
Unadjusted Volume	0	0	0	0	0	0	0	0	0
Internal Capture Trips	0	0	0	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0
Volume Added to Adjacent Streets	0	0	0	0	0	0	0	0	0
Pass-By Trips Volume Added to Adjacent Streets Total AM Peak Hour Internal Capture	0 0 = 0 Percent = 0 Percent	0	0	0	0	0	0	0	

		HCS 2	010 S	ignali	zed	Inters	ectio	on F	Resi	ults S	umma	ary					
General Inform	nation								In	tersect	ion Info	orma	tior)		4 4 4 4	FU)
Agency		Solaegui Engineers		1997. Anns search 19 9	na dhuile an dhuile a		toovisinism dii		D	uration,	h	0.2	5		1		
Analyst		MSH	a han sa ka sa	Analys	is Da	te Jan 1	3, 201	6	A	rea Typ	8	Oth	ner	*******			
Jurisdiction		NDOT		Time F	eriod	AM F	eak H	our	P	HF		0.8	4			, dia	
Urban Street			763-8246-720 8-606369 30	Analys	is Yea	ar Existi	ng		A	nalysis	Period	1>	7:00)			1
Intersection	****	Mt. Rose & Wedge	MA 4949	File Na	me	MrW	e16ax	xus			******	u, de many,		lçılışı ildi ildi ildi yaradı. An görm			ىدىم ا
Project Descrip	tion	<u>_</u>							******						- 🛱	역문화학	<u>.</u>
															•		
Demand Inform	nation				EE	3			WB			N	В		l l	SB	
Approach Move	ement			L	T	R		- [Т	R	L	-	T	R	L	Т	R
Demand (v), v	/eh/ h			90	70	7 15	2	9	374	36	26	9	6	193	240	162	77
																	_
Signal Informa	ation	 -		dimensional distance in the second	2		5		5	1217	2					K	
Cycle, s	90.0	Reference Phase	2		F.	د (۲	~ ⊨		5			17	Y		₹.	<u>}</u>	ĸ ∔
Offset, s	0	Reference Point	End	Green	7.0	7.0	25	0	7.0	9.0	15.0)			ĸ		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	0.0	4.(4.0	0.0	14.0			۹		S	17
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.(1.0	0.0	1.0			6	¢	18 19 17	S S S
Timer Results		an a		EBI	-	EBT	V	/BL		WBT	NBI		1	1BT	SBI	-	SBT
Assigned Phas	e			5		2		1		6	3			8	7		4
Case Number	ase Number					4.0	1	.0		3.0	2.0		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.0	2.0		3.0
Phase Duration	hase Duration, s					30.0	1	9.0		37.0	12.0		2	0.0	21.0		29.0
Change Period	hange Period, (Y+R c), s					5.0	(.0		5.0	5.0		(5.0	0.0		5.0
Max Allow Hea	dway(/	MAH), s		3.1		0.0		.1		0.0	3.1			3.2	3.1		3.2
Queue Clearan	ice Time	e (gs), s		4.7			1	0.2			3.5		1	1.8	15.2	2	9.6
Green Extensio	on Time	(ge), s		0.0		0.0	(.6		0.0	0.0		(0.5	0.3		1.0
Phase Call Pro	bability			1.00			1	00			1.00) [1	.00	1.00)	1.00
Max Out Proba	bility			1.00			0	.01			0.46	5	C	.98	0.11		0.00
	1																
Movement Gro	oup Res	sults			EB		<u>Į</u>		WB		Individualitie	N	3			SB	
Approach Move	ement			L	T	R	L		T	R	<u> L </u>	T		R	<u> </u>	T	R
Assigned Move	ment			5	2	12	1		6	16	3	8	ļ	18	7	4	14
Adjusted Flow	Rate (v	'), veh/h		107	570	283	35	5	445	31	31	11	4	182	286	193	68
Adjusted Satur	ation Flo	ow Rate (s), veh/h/	In	1723	186	3 1849	172	3 1	773	1579	1774	186	3	1579	1774	1863	1579
Queue Service	Time (g s), S		2.7	11.7	/ 11.8	8.2	<u></u>	8.3	1.2	1.5	4.9		9.8	13.2	7.6	3.0
Cycle Queue C	learanc	e lime (gc), s		2.7	11.7	/ 11.8	8.	<u></u>	8.3	1.2	1.5	4.		9.8	13.2	7.6	3.0
Green Ratio (g	<i>//C</i>)			0.08	0.28	5 0.28	0.2		0.36	0.36	0.08	0.1	4	0.17	0.23	0.27	0.27
	ven/n			268	103	5 514	12		1261	561	138	31		263	414	497	421
Volume-to-Cap	acity Ra			0.400	0.55	1 0.552	0.4	9 0	.353	0.055	0.224	0.3		0.692	0.690	0.388	10.161
Available Capa		a), Ven/n	1	268	103	5 514	12		1261	561	138	31		263	414	497	421
Back of Queue	<u>(Q)</u> , V	en/in (50 th percent		1.1	5.3	5.6	3.		3.4	0.4	0.6	2.	4	4.1	5.9	3.3	
Queue Storage	Ratio (RQ) (50 th percen	tile)	0.00	0.00	0.00	0.0		0.00	0.00	0.00	0.0		0.00	0.00		1 0.00
Uniform Delay	(<i>a</i> 1), s	ven		39.5	27.1	(21.1	1 31	2 2	21.4	19.1	39.0	33.	3	35.3	31.5	27.0	25.3
Incremental De	ncremental Delay (d 2), s/veh				2.1	4.2	0.		0.8	0.2	0.3	0.	3	6.4	4.1	0.2	0.1
Initial Queue D	nitial Queue Delay (d 3), s/veh			0.0	0.0		0.		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0
Control Delay (Control Delay (d), s/veh				29.8	3 31.9	31	4 2	22.1	19.2	39.3	33.	6	41.7	35.6	27.2	25.4
Level of Servic	Level of Service (LOS)							<u></u>	<u> </u>	B	D			<u>D</u>	D		
Approach Dela	Approach Delay, s/veh / LOS					С	2	6.0		<u> </u>	38.6	<u>5</u>		D	31.3	5	<u> </u>
Intersection De	ntersection Delay, s/veh / LOS					3	30,7			4	1			1	<u>C</u>		
Multimodel	ulfimodal Results										n		D.				
munimodal Re	ultimodal Results				드러) 	<u> </u>		<u>VVB</u>	~	ļ	N	D		ļ	<u>58</u>	~
Pedestrian LOS	s score	/LUS	ni kating-ang sangkapanang jag	2.9				4.9		C	3.4	** 2100 ** 204	ANTO:24 12	C	3.1		C
I RICACIE FOR 20	core / L(28		1.0	1	A		1.2		A	1.0			A	1.4	· 1	A

HCS 2010[™] Streets Version 6.70

Generated: 1/14/2016 12:07:27 PM

		HCS 2	010 S	ignali	zed	Interse	ection	Res	sults	Sı	umma	ıry				
							-									
General Inform	nation							ļ	Inters	ecti	ion Info	rmati	on	2	22244	
Agency		Solaegui Engineers							Durati	on,	h	0.25		ן ר		
Analyst	********	MSH	a da fa fa sta sta sta fa	Analys	is Dat	e Jan 13	3, 2016	n n n n n n n n n n n n n n n n n n n	Area T	Type	3	Othe	-			
Jurisdiction		NDOT		Time P	eriod	PM Pe	ak Hou	r	PHF			0.92			die	
Urban Street			ANNEL PALICENSELECT	Analvs	is Yea	r Existir	nd		Analys	sis f	Period	1> 7:	00	- 17 17 17		
Intersection		Mt. Rose & Wedge	1999 - 2012 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 -	File Na	me	MrWe	16px.xu	S		ALCONAC			Rda (n. k.) yn mefydra (yn dymae)		· []	
Project Descrip	tion			I											ৰানদদন	FIRE STATE
Demand Inform	nation				EB			W	В		1	NB			SB	
Approach Move	ement	,	ADADLESI IN LADOLMANAP	L	T	R	L	Ţ		R) L	T	R	L	T	R
Demand (v), v	eh/h			130	681	11	96	65	5 1	41	12	51	112	262	49	203
							1									
Signal Informa	ition					K	17	121	5 2	Ų.					K	
Cycle, s	90.0	Reference Phase	2		6		5			Ŧ	2			₹	<u>`</u> `\ '	(†
Offset, s	0	Reference Point	End	Green	7.0	31.0	7.0	10	0 1	5.0	0.0			K		99.92404
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.0	4	.0	0.0	~~~~	<u>></u>		5	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0) [1	.0	0.0		5	6		<u> </u>
									- 01							
Timer Results				EBL	-	EBT	WB	L	WBT		NBL	.	NBT	SBI	_	SBT
Assigned Phas	е			5		2	1		6		3	Ĭ	8	7	[4
Case Number				2.0		4.0	2.0		3.0		2.0		3.0	2.0		3.0
Phase Duration	hase Duration, s					36.0	12.0		36.0		12.0		20.0	22.0)	30.0
Change Period	hange Period, ($Y+R_c$), s				<u> </u>	5.0	5.0		5.0	Ĩ	5.0	T	5.0	0.0		5.0
Max Allow Hea	dway (/	MAH), s		3.1		0.0	3.1		0.0		3.1		3.3	3.1		3.3
Queue Clearan	ce Time	e (gs), s		5.5			4.6	T			2.6	1	6.8	15.0		9.9
Green Extensio	n Time	(ge),s		0.0		0.0	0.0		0.0		0.0		0.5	0.3		0.7
Phase Call Pro	bability		**************************************	1.00)		1.00)	*****		1.00	******	1.00	1.00)	1.00
Max Out Proba	bility			1.00)	a an	1.00)			0.05		0.03	0.04	4	0.00
				9 <u></u>			· · · · · · · · · · · · · · · · · · ·							·		
Movement Gro	oup Res	sults			EB			WE	5			NB			SB	
Approach Move	ement			L	T	R	L	Т	R		L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	10	5	3	8	18	7	4	14
Adjusted Flow	Rate (v	'), veh/h		141	503	250	104	712	11	5	13	55	95	285	53	172
Adjusted Satur	ation Flo	ow Rate (<i>s</i>), veh/h/	In	1723	1863	1847	1723	177	3 157	79	1774	1863	1579	1774	1863	1579
Queue Service	Time (g s), S		3.5	9.2	9.2	2.6	14.8	3 4.	6	0.6	2.3	4.8	13.0	1.9	7.9
Cycle Queue C	learanc	e Time (gc), s		3.5	9.2	9.2	2.6	14.8	3 4.	6	0.6	2.3	4.8	13.0	1.9	7.9
Green Ratio (g	р/С)			0.08	0.34	0.34	0.08	0.34	4 0.3	34	0.08	0.17	0.17	0.24	0.28	0.28
Capacity (c), v	/eh/h			268	1283	636	268	122	2 54	4	138	310	263	434	517	438
Volume-to-Cap	acity Ra	atio (X)		0.527	0.392	2 0.392	0.389	0.58	3 0.2	12	0.095	0.179	0.359	0.657	0.103	0.392
Available Capa	city(c	₀), veh/h		268	1283	636	268	122	2 54	4	138	310	263	434	517	438
Back of Queue	(Q), v	eh/ln (50 th percent	ile)	1.5	4.0	4.1	1.1	6.3	1.	8	0.3	1.0	1.8	5.7	0.8	2.9
Queue Storage	Ratio (RQ) (50 th percen	tile)	0.00	0.00	0.00	0.00	0.0	0.0	00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d1), s	/veh		39.9	22.4	22.4	39.5	24.2	2 20	.9	38.6	32.2	33.2	30.6	24.2	26.3
Incremental De	Incremental Delay (d 2), s/veh				0.9	1.8	0.3	2.0	0.	9	0.1	0.1	0.3	2.9	0.0	0.2
Initial Queue D	initial Queue Delay (d 3), s/veh				0.0	0.0	0.0	0.0	0.	0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (Control Delay (d), s/veh				23.3	24.2	39.8	26.	2 21	7	38.7	32.3	33.5	33.5	24.2	26.5
Level of Servic	Level of Service (LOS)				С	C	D	С	Ċ)	D	С	ГС	С	С	C
Approach Delay, s/veh / LOS				26.3	3	C	27.	2 T	C		33.5	5	Ċ	30.	2	Ċ
Intersection De	Intersection Delay, s/veh / LOS				ł	2	ž 7.9							Č		****
										'						
Multimodal Re	Iultimodal Results				EB		1	WE	3			NB			SB	
Pedestrian LOS	S Score	/LOS		2.9	<u> </u>	С	2.9		С		3.4		С	3.1	*****	С
Bicycle LOS So	core / L(OS		1.0		A	1.3	;	A		0.8		A	1.3		A

HCS 2010™ Streets Version 6.70

		HCS 2	010 S	ignali	zed	Inter	se	ction	Res	sult	ts Sı	umma	ıry	***			Ma Pho to-Juio 7:	
																disci dis		<u></u>
General Inform	nation	~					سليفر المدحد ويرسده			Inte	ersect	ion Info	rmati	on	, ř	(147)22(-6 (4 4	
Agency		Solaegui Engineers	6						Ļ	Dur	ation,	h	0.25			and the second		
Analyst		MSH		Analys	is Da	te Jan	113	, 2016		Are	a Type)	Othe	-	11		÷	1
Jurisdiction		NDOT		Time P	Period	AM	Pe	ak Hou	r	PHF	F		0.84		-			~11
Urban Street	****			Analys	is Yea	ar Exi	stin	g + Pro	ject	Ana	alysis I	Period	1> 7:	00	-		s ≩. : 1	
Intersection		Mt. Rose & Wedge		File Na	ame	/Mr\	Ne1	l6aw.xu	S					***				
Project Descrip	tion						1994 AU									14114	<u>P2 5 </u>	<u>7)</u>
Down of Inform						<u>.</u>		· · · · · · · · · · · · · · · · · · ·	10/1			1	NID		· · · · ·	0		
Demand Inform	nation	₩ <u>₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>				5		<u> </u>		в . Т						ים ד ד	2 - 1	<u>с</u>
Approach Move	ement						К П			-	<u>к</u>							70
Demand (v), v	en/n			95] /4/	2 1 1	5	299	38	io I	30	<u> 20</u>	1 90	1 193	240	1 10	<u>י 2 </u>	19
Signal Informa	tion)	1		R R	7		T	TH	- DT		<u> </u>				I
Cycle s	90.0	Reference Phase	2		2	er-		⊒_ ¥	╡.	D	642	¥Ф			_	5	K	1
Offset s	0	Reference Point	End		<u> </u>					<u>) </u>				and State	<u> </u>			inge og 4
Uncoordinated	No	Simult Gap F/W	On	Green	7.0	$-\frac{17.0}{0.0}$	<u>)</u>	25.0)	9.0	15.0			<u>A</u>	L		† 4
Force Mode	Fixed	Simult, Gap N/S	On	Red	11.0	10.0)	1.0	14.0)	10.0	1.0		6		` ``		Υ.
	1.000	<u>l'ennent capitie</u>	1					<u>,</u>			1							
Timer Results		and the second second		EBL		EBT	l	WBI		Ŵ	BT I	NBL		NBT	SB	LI	ę	SBT
Assigned Phas	е			5		2	·····	1		6	6	3		8	7	¦		4
Case Number				2.0		4.0		2.0		3.	.0	2.0		3.0	2.0)		3.0
Phase Duration	hase Duration, s			12.0	,	30.0	4	19.0)	37	7.0	12.0		20.0	21.	0	2	9.0
Change Period	hange Period, (Y+R c), s			5.0		5.0		0.0		5.	.0	5.0		5.0	0.0)	, 	5.0
Max Allow Hea	hange Period, (Y+R c.), s ax Allow Headway (<i>MAH</i>), s					0.0		3.1		0.	.0	3.1		3.2	3.1		-	3.2
Queue Clearan	ice Time	e (gs), s		4.8			Î	10.2	2			3.5		11.8	15.	2	;	9.6
Green Extensio	on Time	(ge), s	*****	0.0		0.0		0.6		0.	.0	0.0	1	0.5	0.3	3		1.0
Phase Call Pro	bability	, <u>, , , , , , , , , , , , , , , , , , </u>	and the second secon	1.00)	BETER BETER B		1.00)		THE REAL PROPERTY IN THE REAL PROPERTY INTERNAL PROPERTY	1.00)	1.00	1.0	0	1	.00
Max Out Proba	bility	ng n		1.00	5			0.01				0.46	;	0.98	0.1	1	0	00.00
Movement Gro	oup Res	sults			EB	}	10000		WE	3			NB			S	3	
Approach Move	ement			<u> </u>	<u> </u>	R		<u> </u>	T		R	L	<u> </u>	R	L	T		R
Assigned Move	ment			5	2	12	2	1	6		16	3	8	18	7	4		14
Adjusted Flow	Rate (v	<u>′), veh/h</u>	•••••••	113	598	3 29	7	356	458	}	31	31	114	182	286	19	3	70
Adjusted Satur	ation Flo	ow Rate (s), veh/h/	ln	1723	186	3 184	49	1723	177	3 1	1579	1774	1863	1579	1774	186	3	1579
Queue Service	Time (<u>gs), s</u>		2.8	12.4	4 12	.4	8.2	8.6		1.2	1.5	4.9	9.8	13.2	7.	<u>}</u>	3.1
Cycle Queue C	learanc	e Time (g c), s		2.8	12.4	4 12	.4	8.2	8.6		1.2	1.5	4.9	9.8	13.2	7.	$\frac{6}{2}$	3.1
Green Ratio (g	γ/C)			0.08	0.2	8 0.2	28	0.21	0.36	5	0.36	0.08	0.17	0.17	0.23	0.2	<u>.7</u>	0.27
Capacity (c), V	ven/n		1414 - - 1 11	268	103	5 51	4	(21	126	1	561	138	310	263	414	49		421
Volume-to-Cap	acity Ra	atio (X)		0.422	0.57	8 0.5	79	0.489	0.36	3 (0.055	0.224	0.368	0.692	0.690	0.3	88	0.167
Available Capa		a), ven/n		268	103	5 51	4	121	126		561	138	310	203	414	49	$\frac{1}{2}$	421
Back of Queue	(Q), V	en/in (50 th percent	(IIE)	1.2	5.7	6.		3.3	3.6		0.4	0.6	2.2	4.1	5.9	3.	3	1.1
Queue Storage		(RQ) (bu in percen	ille)	20.00				0.00	0.00		10.1	20.00	0.00	1 0.00	0.00	0.0		0.00
United Delay	(ur), s		·····	39.0	20.			0.2			19.1	39.0	33.3	35.5	31.0	21		20.3
Incremental De	ncremental Delay (d 2), s/veh				2.4	4.		0.2		<u>}</u>	0.2	0.3	0.3		4.1	$\frac{1}{0}$	<u>-</u>	0.1
Cantral Dalaw	nitial Queue Delay (d 3), s/veh			40.0			U	0.0		<u>_</u>	10.0		0.0	44.7	0.0	0.		0.0
Control Delay (Control Delay (d), s/veh			40.0	30.	3 32		31.4	22.	3	19.2	39.3	33.0	41.7	35.0	12(.2	25.4
Level of Servic	Level of Service (LOS)			U 20.4											U U		<u>`</u>	
Approach Delay, s/veh / LOS			32.	1	U.	 	ן <u>∠0.(</u> 20.0			<u> </u>	30.0	2		<u> 31.</u> C	3		<u> </u>	
I milersection De	Intersection Delay, s/veh / LOS			N			JC	.0				l			<u> </u>			
Multimodal Re	Iultimodal Results			1	FF	3		1	WF	3		<u> </u>	NB		1	,S	B	
Pedestrian LOS	Iultimodal Results			29		C	****	20			C	34		C	1 3		visioninate	C
Bicycle LOS So	core / L	OS		1.0		Ă		1.2		/	Ă	1.0		Ă		4	******	Ă
· · · · · · · · · · · · · · · · · · ·				×		·		8				u	I					

HCS 2010TM Streets Version 6.70

Generated: 1/14/2016 12:08:17 PM

		HCS 20	010 Si	gnaliz	zed l	nterse	ction	Res	ults Su	ımma	ry				
General Inform	nation							[[ntersect	ion Info	rmatio	n		4))) 4 4 	126102
Agency		Solaegui Engineers	i						Duration,	h	0.25			3	
Analyst		MSH		Analysi	s Date	Jan 13	, 2016	1	Area Type)	Other		4		
Jurisdiction		NDOT		Time P	eriod	PM Pe	ak Houi	F	PHF		0.92				+
Urban Street		\$2745000000000000000000000000000000000000		Analysi	s Yea	r Existin	g + Proj	ect /	Analysis I	Period	1> 7:0	0			- - X
Intersection	1997 (1997)	Mt. Rose & Wedge		File Na	me	MrWe'	6pw.xu	S							
Project Descrip	tion													4 1 4-12	<u> १ हाल</u>
							1			·)			r		
Demand Inform	nation				EB			WB	\$ 		NR NR			5B -	
Approach Move	ement				T				R						
Demand (<i>v</i>), v	eh/h			134	703	11	96	1 693) 141	<u> 12</u>		1 112	1 202	1 49	1 208
Signal Informe	tion			((<u>} </u>	ງ -ງຄ	<u> </u>						
		Reference Phase	2		17.	÷ الم	Ξ Ľ	100	v ⊻+		K		_	5	4
Offset s	90.0 A	Reference Point	Fnd			<u> </u>				Ϋ		4	<u>V :</u>		
Uncoordinated	No	Simult Gan FAM	On	Green	7.0	31.0	7.0	110.0	<u>) 15.0</u>			7	A.	L.	
Force Mode	Fixed	Simult Gan N/S	On	Red	<u>4.0</u> 1.0	1.0	1.0	0.0	1.0	0.0		2000 C	\$	¥,	
- oroc mode	Linou	I dimate oup the	<u></u>		<u></u>										
Timer Results				EBL	.	EBT	WBI	-	WBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	e			5		2	1		6	3		8	7	ĺ	4
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		3.0
Phase Duration	nase Duration, s					36.0	12.0		36.0	12.0		20.0	22.0	Í	30.0
Change Period	hange Period, (Y+R c), s					5.0	5.0		5.0	5.0		5.0	0.0		5.0
Max Allow Hea	hange Period, (Y+R c), s ax Allow Headway (<i>MAH</i>), s					0.0	.3.1	1	0.0	3.1		3.3	3.1		3.3
Queue Clearan	ice Time	e (gs), s		5.7			4.6			2.6		6.8	15.0	Í	10.3
Green Extensio	on Time	(ge), S		0.0		0.0	0.0		0.0	0.0		0.6	0.3		0.7
Phase Call Pro	bability	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.00			1.00			1.00)	1.00	1.00		1.00
Max Out Proba	bilîty			1.00			1.00			0.05	; [0.03	0.04		0.00
Movement Gro	oup Res	sults			EB	NAM SAME AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI		WB			NB			SB	
Approach Move	ement			L	T	R	L	T	R	L		R	<u>L</u>	T	
Assigned Move	ement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow	Rate (v	/), veh/h		146	519	258	104	753	115	13	55	95	285	53	178
Adjusted Satur	ation Fl	ow Rate (s), veh/h/	ไท	1723	1863	1847	1723	1773	1579	1774	1863	1579	1/74	186	3 1579 0.0
Queue Service	Time (<u>g</u> s), S		3.7	9.5	9.6	2.6	15.9	4.6	0.6	2.3	4.8	13.0	1.9	0.3
Cycle Queue C	learand	e Time (g c), s		3.7	9.5	9.6	2.6	15.9	4.6	0.6	2.3	4.8	13.0	1.9	8.3
Green Ratio (g	7/C)	an a	MARLOSICOUR	0.08	0.34	0.34	0.08	10.34	0.34	0.00 400	0.17	0.17	124	517	/ 1/20
Capacity (c),	ven/n			200	128		200 0.200	1222	. 044 7 0 040	100	0 170	1 200	404 0 667	01/ 010	3 0 407
Volume-to-Cap	acity Ra	auo(X)		0.544	0.404	+ 10.405	0.389	1220	1 U.212	120	210	262	10.001	617	428
Available Capa		a), Ven/N		208	1283			67	1 044	02	10	1 203	+04 57		20
Back of Queue	(Q),V	PONCEO the percent	uie) sile)	0,00		4.3					0.00		0.7		
Luniform Delay		(Arter) (South percen	niie)		0.00	0.00	20 5	24 6	20.00	38.6	32.2	33.2	30.6	24	2 28 5
Uniform Delay	Uniform Delay (d 1), s/veh					1 0	03.0	24.0	0.0	00.0 01	02.2	00.2	2 9		$\frac{1}{102}$
Incremental De	Incremental Delay (d 2), s/veh					1.9	0.3 0.0	1 2.3		0.1 0.0			0.0		
	Control Delay (d 3), s/veh					24 1	20 0	26.0) 0.0	38.7	32.2	33.5	33.5	24	2 267
Lovel of Service	Level of Service (LOS)					C 24.4	133.0 N	<u>20.8</u>		<u> 30.7</u> П	<u> </u>	1 <u>.</u>	<u>с.</u>	<u> </u>	
Level of Servic	Approach Delay, s/veh / LOS						27	7 1		221	5 1	<u>ـــــّـــــــــــــــــــــــــــــــ</u>	30.4	5 7	<u>~</u>
Approach Dela	Intersection Delay, siven / LOS					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>8</u> <u>4</u> 1. 8 1	<u>, </u>	<u> </u>		<u> </u>		C	- [~
I maersection De	Intersection Delay, s/ven/ LOS									И <u></u>			-	-	
Multimodal Re	fultimodal Results						1	WB	}	1	NB		1	SE	3
Pedestrian I O	S Score	/LOS		2.9	T	С	2.9		С	3.4		С	3.1		С
Bicycle LOS S	core / L	OS		1.0		A	1.3		Α	0.8	3	A	1.3		Α

HCS 2010[™] Streets Version 6.70

	HCS 20	010 Si	gnaliz	zed	Inter	rse	ction	Res	ults S	umm	ary					
											<u>.</u>				de la la la	44
General Information					e cana anna anna Anna Anna A		Light, proposite laws	<u> </u>	ntersec	tion In	orma	ation)		1 2020 1 2	[94] [94]
Agency	Solaegui Engineers					****		[[Duration	, h	0.2	25			2 <u></u> -	-
Analyst	MSH		Analysi	is Dat	le Jar	n 13,	, 2016	/	Area Ty	e	Otl	her				
Jurisdiction	NDOT		Time P	eriod	AM	1 Pea	ak Hour	F	PHF		0.8	34		<u>क्षान्य</u>		11
Urban Street	IN ADVITED OF THE OWNER OF THE OWNER OF		Analysi	is Yea	ar 202	25 B	ase		Analysis	Period	1>	7:00)	3		
Intersection	Mt. Rose & Wedge		File Na	ime	Mr\	We2	5ax.xus	}				Lab ationa .				
Project Description		-				an este vitte			******					1 1	<u>4 1 (11) 11</u>	10
							1			- 1	,			·1		
Demand Information	· · · · · · · · ·						1	VVE	<u>}</u>	_		<u>ЧВ</u>			30 	
Approach Movement						R						 			100	
Demand (v), veh/h			104	821		1/ 1/	347	434	1 42	30	_[_]	111	1_224	1 2/9	100	09
Cinnal Information			·	r	<u> </u>	5) <u> </u>	· }		()`					1
	Reference Phase	2			e		₽ 辛	<u>ר</u> ד	a &⊄	2 124	+ a	Y		<u> </u>	<u>s</u> 1	4
Offect e	Reference Point	End									<u> </u>	6 9079	<u>9.1</u> .00.3	<u> </u>		A. 18 19 19 14
Uncoordinated No	Simult Gan EAM	On	Green	7.0	$-\frac{7.0}{0.0}$	0	25.0	$\frac{17.0}{14.0}$	9.0	15	0			<u>A</u>	L	† =
Eorce Mode Fived	Simult Gan N/S	On	Red	1.0	10.0	0	14.0 11.0	11.0	0.0	11.0		or oth	3	g	×.,	
T OICE MODE TI INCO			<u>, , , , , , , , , , , , , , , , , , , </u>	1.10						1					<u> </u>	
Timer Results			EBL	. Г	EBT	-	WBL	. <u> </u>	WBT	NE	BL	N	IBT	SBL	. [SBT
Assigned Phase			5		2		1		6	3			8	7		4
Case Number			2.0		4.0	ш _{ара} ,	2.0		3.0	2.	0		3.0	2.0		3.0
Phase Duration, s	nase Duration, s				30.0)	19.0		37.0	12	.0	2	0.0	21.0		29.0
Change Period, (Y+R.	hange Period, (Y+R c), s						0.0		5.0	5.	0		5.0	0.0		5.0
Max Allow Headway (/	MAH). s		3.1		0.0		3.1		0.0	3.	1		3.2	3.1	1	3.2
Queue Clearance Time	e (a s). S		5.1			una.con.a	11.7			3.	7	1	3.3	17.9		11.0
Green Extension Time	(<i>g</i> _e), s	antesanonantenat	0.0		0.0		0.7		0.0	0.	0	(0.3	0.2	ABALLO (10) PROSPERATOR	1.1
Phase Call Probability			1.00)	*****		1.00		****	1.(0	1	.00	1.00	UNITED BY SUCCESSION	1.00
Max Out Probability			1.00)			0.04			0.7	'3	1	.00	1.00	·	0.01
								' 								
Movement Group Res	sults		L	EB	anando incelativida			WB		l	<u> </u>	₩B			SB	******************************
Approach Movement			<u> L </u>	T	F	<u>२</u>	L	T	R			T	R	L	T	R
Assigned Movement	· ·		5	2	1	2	1	6	16	3		B	18	7	4	14
Adjusted Flow Rate (v	r), veh/h		124	663	3 32	29	413	517	38	36	1:	32	207	332	224	82
Adjusted Saturation Fl	ow Rate (s), veh/h/	In	1723	186	3 18	48	1723	1773	3 1579	1774	18	63	1579	1774	1863	1579
Queue Service Time (g s), S		3.1	14.	1 14	1.1	9.7	9.9	1.4	1.7		.7	11.3	15.9	9.0	3.6
Cycle Queue Clearanc	e Time (<i>g</i> c), s		3.1	14.	1 14	1.1	9.7	9.9	1.4	1.7	$\frac{5}{5}$	$\frac{.7}{.7}$	11.3	15.9	9.0	3.6
Green Ratio (g/C)			0.08	0.28		28	0.21	0.36	0.36	100		17	0.17	0.23	0.27	U.27 404
Capacity (c), ven/h		u de la companya de l	268	103	5 5	13	121	1261		138		10	203	414	497	421
Volume-to-Capacity Ra	atio (X)		0.462	0.64		41	0.568	1281		120	1 0.4	10	0.787	0.802	407	10.195
Available Capacity (C	a), veri/n		200 1 0		J D	10	121	1201		100	+		200 5 0	<u> </u>	20	12
Back of Queue (Q), V	en/in (50 th percent		1.3	0.0		0.0	4,0	4.1				00	0.2		0.00	
Uniform Dolou (d.)	(no) (ou in percen	uie)	30.7	20.00		00	21.9	21.0		30.1		3.6	36.0	32.5	27.5	25.5
Incrementel Deley (d 1), s		0.5	20.		0.0	07	10	0.2	01		3	13.5	10.1	0.2		
Indienental Delay (0	******	0.0				0.1	1.0	0.2				0.0	0.1	0.0		
Control Delay (d	مسعوبة مرجوسو ويردو الشهدو	40.0	21		4.6	20.0	22.0		20.0		4 0	0.0 20 F	42.6	27 7	25.6	
Louis of Service (LOS)					7.0 C	02.0	22.8	, 13.4	- 39.4 N		7.U C			<u> </u>		
Approach Delow etter		22 / U		<u> </u>	<u> </u>	26.0	Ť			`	<u> </u>	D D	351	5		
Intersection Delay, siven		J.J.A	<u>• </u>	Ų.	22	g <u>∠0.0</u> >Q	<u></u>	<u> </u>			<u>.</u>	<u> </u>	<u>п 33.4</u> С	<u> </u>	<i>م</i> ي 	
mersector Delay, SIV			Я							-J ¹				<u> </u>		
Multimodal Results	<u></u>		E	3			WB	}	1	1	٧B		1	SB		
Pedestrian LOS Score	LOS		2.9)	С	*****	2.9	T	С	3	.4	1	С	3.1		С

 $\operatorname{Copyright} @$ 2016 University of Florida, All Rights Reserved.

Bicycle LOS Score / LOS

HCS 2010[™] Streets Version 6.70

А

WHEN WAY

1.1

А

1.3

1.1

А

Generated: 1/14/2016 12:08:55 PM

А

1.5

		HCS 20	ction	Res	ult	ts Sı	ımma	ry										
				-									-					
General Inform	ation									Inte	rsecti	on Info	rmatio	on		4 2. 2. 	<u>1929</u>	
Agency		Solaegui Engineers								Dura	ation,	h	0.25					
Analyst		MSH		Analysi	is Da	te	Jan 13	, 2016		Area	а Туре)	Other		10		÷.,	
Jurisdiction		NDOT		Time P	eriod		PM Pe	ak Houi		PHF	-		0.92		लाल	1		~ 문
Urban Street				Analysi	is Yea	ar	2025 B	ase		Ana	lysis F	Period	1> 7:	00				
Intersection		Mt. Rose & Wedge		File Na	ime		MrWe2	25px.xu	S									
Project Descripti	ion														<u></u>	न एक	4117]
					<u> </u>							r			· (· · · · · · · · · · · · · · · · · ·			
Demand Inform	ation				EE	3	patrona station and a state of the		WE	3		1	NB		<u> </u>	SE) 	_
Approach Mover	ment			L	T		R	<u>l</u> L	<u> </u>		R	L	<u> </u>	R	L	T	-	R
Demand (v), ve	eh/h			151	790	0	13	111	76	0	164	14	59	130	304	57	<u> </u>	236
					·		r	·····	<u>س –</u>		<u></u>							
Signal Informat	tion				2	سر		= 5	24	Я И	24					ĸ		
Cycle, s	90.0	Reference Phase	2			ĸ	R.	5			l î	7		·	र ।			4
Offset, s	0	Reference Point	End	Green	7.0		31.0	7.0	10.	0	15.0	0.0		12.12	<u>K</u>	in star		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	and the second second	4.0	4.0	10.0		4.0	0.0						P
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0		<u>[1.0</u>	11.0	10.0		11.0	10.0		6	<u>ir</u>		7	
					r				<u> </u>	1.6.15		NDI		NOT				DT.
Timer Results				EBL	:		:BI		<u>-</u>	VVE	SI	NBL	·	NBI			51	
Assigned Phase)			5			2	1		6	5	3		8	/			1
Case Number				2.0			4.0	2.0		3.	0	2.0		3.0	2.0	<u> </u>	3.	.0
Phase Duration,	ase Duration, s					3	6.0	12.0	<u> </u>	36	.0	12.0	<u> </u>	20.0	22.0	<u>, </u>	30	0.0
Change Period,	hange Period, (Y+R c), s						5.0	5.0		5.	0	5.0		5.0	0.0		5.	.0
Max Allow Head	way (I	MAH), s		3.1)	0.0	3.1		0.	.0	3.1		3.3	3.1		3.	.3
Queue Clearanc	e Time	(gs), S		6.2	munden	*********	and contact to the set	5.0			1	2.7	-	7.5	17.6	3	11	.5
Green Extension	n Time	(ge), s		0.0)	0.0	0.0		0.	.0	0.0		0.6	0.3	<u> </u>	0	.8
Phase Call Prob	ability			1.00)	,,		1.00)			1.00		1.00	1.00)	1.	00
Max Out Probab	oility			1.00		an a		1.00				0.07		0.07	0.36	5	0,	00
						<u>,</u>		<u></u>		e. Alta	<u> </u>		NID		1 ²²⁻²²⁻²²	0)	
Wovement Gro	up Res	Suns a second second								<u> </u>						<u>о</u> г	, 	D
Approach Move	ment				- 1	-	40				16	- L - 2		19				14
Adjusted Flow) uch/h		164	£07	5	14 200	121	026		125	15	61	10	330	62		202
Adjusted Flow R	tion El), ven/n		104	196	2	1947	1722	020	2 1	1570	10	1963	1570	1774	186	2	1570
Aujusted Satura				1123	100		1047	20	47.0		55	07	1000 クフ	1575	15.6		5	0.5
Queue Service	nine ()	Js), S		4.2	11.		11.0	3.0	47.0	<u></u>	J.J E E	0.7	2.1	5.5	15.0	2.2		0.5
Croon Potio (a		e mine (g c), s		4.2		╧┼	0.24	3.U 0.00			0.0		<u> </u>	0.0	0.24	<u> </u>		0.28
Green Ratio (9/	oh/h			268	179	3	626	269	1221		544	138	310	263	0.24 131	51	7	438
Volume to Cons	en/n			200	0.45	0 5	000	200	0.67		1 2/18	0.110	0 207	203	0 762	0.13		1461
Available Cape			· · · · · · · · · · · · · · · · · · ·	268	128	3	636	268	122	2	544	138	310	263	A34	51	7	438
Rock of Quarter		n), venni ob/lo (50 th porcont	ila)	1.200	120		50 50	1 2	77		21	0.3	12	200	73			35
Dack of Queue I	Patio 7	ROV (50 th percen	tila)		4.0	$\frac{1}{2}$		0.00			0.00		0.00		0.00			0.0
Uniform Doloy (wob		40.2	22		22.0	30.7	25.0		21 1	38.6	32 1	33.6	31.6	24	2	26.00
Incremental Del	av (d s) s/veh		3.0	1.2	2	2.3	0.4	3.0		1.1	0.1	0.1	0.4	7.0	0.0	5	0.3
incremental Delay (d 2), s/ven				0.0		$\frac{1}{2}$	0.0	0.1			0.0	0.0	0.0	0.0	0.0	0.0	$\frac{1}{2}$	0.0
Control Delay (d), s/veh				432	24	1	25.3	40.1	28 2	5	22.2	38 7	32.5	33.9	38.6	24	3	27.2
Level of Service	Level of Service (LOS)					-	с. – С.	<u> </u>	<u> </u>	╧╋╧	<u> </u>	<u> </u>	<u>с.</u>	1 C	<u>л 10.0</u>		Ť	<u> </u>
Approach Delay, s/veh / LOS				27 4	L		C l	28.9		~	<u> </u>	33.5	Ť	<u> </u>	33	$\frac{1}{2}$ 1		c
Approach Delay, s/veh / LOS						w lige at a ye	~	16	<u> </u>		<u> </u>		<u> </u>		<u>в</u> 00. С	-		-
mersection Delay, siven / LOS				H			<u>د</u> ت					1			-			
Multimodal Re	Iultimodal Results				EE	3 3		1	WE	3		<u> </u>	NB		1	S	3	
Pedestrian LOS	Score	/LOS		2.9	1	~~~~	С	2.9	, r	(С	3.4		С	3.1	ī		С
Bicycle LOS Sc	ore / L(OS	,	1.1		12,700 g 0,700	A	1.4		/	A	0.8		Α	1.5	5		Α

Prefer to a destruction of the second system o		HCS 2	010 S	ignal	ized	Inters	ectior	n Res	sults S	umm	ary				
General Inforn	nation								Intersec	tion Inf	orma	tion			
Agency		Solaegui Engineers	;						Duration	, h	0.2	5	ען (י		
Analyst		MSH		Analy	sis Da	te Jan ′	3, 2016	T	Area Typ	e	Oth	er	Tá T		
Jurisdiction		NDOT		Time	Period	I AM F	eak Hou	ır	PHF		0.8	4		i in	지구
Urban Street				Analy	sis Ye	ar 2025	Base +		Analysis	Period	1>	7:00			
						Proje	ct							\square	سليخ ا
Intersection	tion	Mt. Rose & Wedge		File N	ame	MrW	e25aw.xi	us					_ 7	নিবিকল	<u>te d</u>
Project Descrip	uon	J					1							•	
Demand Inform	nation			}	FF	2	- hj	\٨/	2	1	N	R	<u> </u>	CD.	
Approach Move	ement			<u> </u>		, R		ΤT		1					
Demand (v), v	eh/h			109	85	3 17	347		5 42	30	11		270	1 100	
				u <u>100</u>	1 00.		1 041		<u> </u>			1 224	1 213	1 100	1 21
Signal Informa	tion	Robert des solerations des soler Roberts		1	1	i			JU	. 1.21					
Cycle, s	90.0	Reference Phase	2		~	e i	;=_, '		- E43		∱ 21		_	~	4
Offset, s	0	Reference Point	End	Groon	170		25.0			45.0			<u> </u>	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	10.0	4.0	4.0	9.0	4 0	스	7		L.	∱⊯
Force Mode	Fixed	Simult. Gap N/S	On	Red	11.0	0.0	1.0	1.0	0.0	1.0			6	× ,	
Timer Results	. • . • •			EB	L	EBT	WB	L	WBT	NB		NBT	SB		SBT
Assigned Phase	e			5		2	1	İ	6	3		8	7		4
Case Number				2.0		4.0	2.0		3.0	2.0	************	3.0	2.0		3.0
Phase Duration	ase Duration, s					30.0	19.0)	37.0	12.0)	20.0	21.0	,	29.0
Change Period,	nange Period, (Y+R c), s					5.0	0.0		5.0	5.0		5.0	0.0		5.0
Max Allow Head	dway (A	MAH), s		3.1		0.0	3.1		0.0	3.1		3.2	3.1		3.2
Queue Clearan	ce Time	(gs), s		5.2			11.7	7		3.7		13.3	17.9)	11.0
Green Extensio	n Time	(ge), s		0.0		0.0	0.7		0.0	0.0		0.3	0.2		1.1
Phase Call Prot	oability	1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -		1.00)		1.00)		1.00)	1.00	1.00)	1.00
Max Out Proba	bility			1.00)		0.04	1		0.73	3	1.00	1.00)	0.01
				-											
Movement Gro	up Res	ults			EB			WB			NE			SB	
Approach Move	ment			L	T	R	}L	<u> </u>	R	L	T	R	L	T	R
Assigned Wove	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	kate (V), ven/n		130	690	343	413	530	38	36	132	207	332	224	85
Aujusted Satura			n	1/23	1863	1849	1723	1773	1579	1774	186	3 1579	1774	1863	1579
		(α_{s})		3.2	14.8	14.8	9.7	10.2	1.4	1.7	5.7	11.3	15.9	9.0	3.7
Green Ratio (a	/C)	5 mile (1910), 18		0.08	0.28	0.28	9.7	0.2	0.36	1.7	0.1	11.3	15.9	9.0	3.7
Capacity (c), v	eh/h			268	1035	5 514	727	1261	561	138	310	263	414	10.27	121
Volume-to-Capa	acity Ra	tio (X)		0.484	0.66	7 0.668	0.568	0.420	0.068	0.259	0.42	6 0 787	0.802	0.451	0 201
Available Capad	city (c a), veh/h		268	1035	5 514	727	1261	561	138	310	263	414	497	421
Back of Queue	(Q), ve	h/In (50 th percentil	e)	1.4	6.8	7.2	4.0	4.2	0.5	0.7	2.5	5.2	77	3.9	14
Queue Storage	Ratio (RQ) (50 th percent	ile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1), s/	veh		39.8	28.8	28.8	31.8	22.0	19.2	39.1	33.6	36.0	32.5	27.5	25.6
Incremental Del	ncremental Delay (<i>d</i> 2), s/veh					6.7	0.7	1.0	0.2	0.4	0.3	13.5	10.1	0.2	0.1
Initial Queue De		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (Control Delay (d), s/veh					35.6	32.5	23.0	19.4	39.4	34.0) 49.5	42.6	27.7	25.7
Level of Service	evel of Service (LOS)					D	С	С	В	D	С	D	D	C	C
Approach Delay		34.1		С	26.9)	C	43.1		D	35.2	:	D		
Intersection Del				3	3.1					*********	С	aturna dana an			
Multimodal Res	ultimodal Results							WB			NE			SB	
Pedestrian LOS	Score /	LOS		2.9		С	2.9		С	3.4		С	3.1		С
Bicycle LOS Sco	ore / LO	S]	1.1		Α	1.3		A	1.1		A	1.5		A

HCS 2010TM Streets Version 6.70

Generated: 1/14/2016 12:09:34 PM

HCS 2010 Signalized Intersection Results Summary

		1001	10 01	gnanz	.04 11						- ,					
General Inform		. lint						on Info	rmatio	n		1)3(8)(1)	<u>898</u>			
Agency Solaegui Engineers								D	uration.	h	0.25					
Applyst		MSH	T	Analysi	s Date	Jan 13	2016	A	rea Type)	Other		AT.			
Juriediction				Time Period		PM Pe	PM Peak Hour				0.92				니자	
Urban Street			Analysis Year		2025 B	ase +	A	nalvsis F	Period	1> 7:0)0					
				• • • • • •	Project	:		,								
Intersection Mt. Rose & Wedge				File Na	me	MrWe2	25pw.xu	S					1	ৰ <u>লাক প</u>	ផល	
Project Descrip	tion													William Barrison		
													·			
Demand Information					EB	and a subsection of the subsec		WB		<u> </u>	NB			SB		
Approach Movement				L	T	R	Ľ	T	R	L	T			T	TR	
Demand (v), v	reh/h	an an an an an Anna a tha a tha da tha tha tha tha tha tha tha tha tha th		155	812	13	<u> </u> 111	798	164	14	59	130	<u>j</u> 304	57	242	
						upination in						1		<u> </u>		
Signal Informa	ation						= 5	1245	24					ĸ	4	
Cycle, s	90.0	Reference Phase 2			- L	E,	5		1 1	2		, T		1	• 19 14 1	
Offset, s	0	Reference Point End		Green	7.0	31.0	7.0	10.0	15.0	0.0			<u>a</u>			
Uncoordinated	No	Simult. Gap E/W On		Yellow	4.0	4.0	4.0	0.0	4.0	0.0		^ ·	` <u></u>			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	11.0	11.0	10.0	1.0	10.0			<u> </u>	<u> </u>		
					<u> </u>			<u> </u>	WOT	NIDI	<u> </u>	NOT	001	<u> </u>	SPT	
Timer Results				EBL		EBI	VVBL			INBL	: <u> </u>	NDT				
Assigned Phas	e			5		2	1	6		3		8			4	
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2,0		3.0	
Phase Duration	1, S			12.0		36.0	12.0		36.0	12.0		20.0	22.0		50.0	
Change Period, (Y+R c), s				5.0	utourset and the	5.0	5.0		5.0			5.0			0.0	
Max Allow Headway (<i>MAH</i>), s				3.1		0.0	3.1	3.1 0.0		3.1		3.3			3.3	
Queue Clearance Time (g s), s			6.3		d y he r y ling prijet i in die heren vie	5.0	5.0		2.7				<u> </u>	11.9		
Green Extension Time (g e), s			0.0		0.0	0.0	0.0 0.0		0.0		0.6			0.8		
Phase Call Pro	bability	·		1.00			1.00	1.00		1.00		1.00	1.00		1.00	
Max Out Proba	bility			1.00		en de la composición de	1.00		. <u></u> l	0.07)	0.08	0.36		0.00	
N. C.	De		<u> </u>	<u> </u>	CD					NB			<u> </u>	SB		
Wovement Gro	oup Res	SUITS										I P		T	T R	
Approach Wove	ement					12	- L - 1	6	16		י א	18	7	4	14	
Assigned Wove		· · · · · · · · · · · · · · · · · · ·		160	500	207	404	967	125	15	64	100	330	62	209	
Adjusted Flow	Rate (V	v), ven/n		100	1999	1947	1723	1773	1570	1774	1863	1579	1774	1863	1579	
Adjusted Satur				43	11 3	11 3	30	19.1	55	0.7	27	5.5	15.6	2.2	9.9	
Cycle Oueue C	learanc	g_{s} , s		4.3	11.3	11.3	3.0	19.1	5.5	0.7	2.7	5.5	15.6	2.2	9.9	
Green Ratio (π/C)	<u>, , , , , , , , , , , , , , , , , , , </u>		0.08	0.34	0.34	0.08	0.34	0.34	0.08	0.17	0.17	0.24	0.28	0.28	
Capacity (c).	veh/h		******	268	1283	636	268	1222	544	138	310	263	434	517	438	
Volume-to-Cap	acity Ra	atio (X)		0.629	0.467	0.468	0.450	0.710	0.248	0.110	0.207	0.413	0.762	0.120	0.476	
Available Capa	acity (c	a), veh/h		268	1283	636	268	1222	544	138	310	263	434	517	438	
Back of Queue	(Q), v	eh/ln (50 th percent	ile)	1.9	5.0	5.1	1.3	8.2	2.1	0.3	1.2	2.1	7.3	1.0	3.6	
Queue Storage Ratio (RQ) (50 th percentile)			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Uniform Delay	(d1).	s/veh		40.2	23.0	23.1	39.7	25.6	21.1	38.6	32.4	33.6	31.6	24.3	27.0	
Incremental Delay (d 2), s/veh			3.5	1.2	2.5	0.4	3.5	1.1	0.1	0.1	0.4	7.0	0.0	0.3		
Initial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (d), s/veh			43.8	24.3	25.5	40.1	29.1	22.2	38.7	32.5	33.9	38.6	24.3	27.3		
Level of Service (LOS)				D	С	C	D	С	С	DC		С	D	С	C	
Approach Delay, s/veh / LOS				27.7	7	C	29.	29.5 C		33.8 C			33.2 C			
Intersection Delay, s/veh / LOS					นสสระบารที่มะคะก	29	9.9						С			
			1													
Multimodal R	esults				EB			WB			NB			SB		
Pedestrian LO	S Score	/LOS		2.9		С	2.9		С	3.4		С	3.1		С	
Bicycle LOS Score / LOS					1.1		A 1.4		А	0.8		Α	1.5		Α	

Copyright © 2016 University of Florida, All Rights Reserved.

	HCS 2010 Two-Way Stop	HCS 2010 Two-Way Stop Control Summary Report										
General Information		Site Information										
Analyst	MSH	Intersection	Mt. Rose & Edmonton									
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT									
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway									
Analysis Year	2016	North/South Street	Edmonton Drive									
Time Analyzed	AM Existing	Peak Hour Factor	0.82									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description			an a									
Lanes												

Healorstweit Gest-Welt Major Street Fast-Welt

Vehicle Volumes and Adjus	stmen	its															
Approach	Eastbound				1	West	oound		1	North	bound		Southbound				
Movement	Ų	L	Ţ	R	U	Ļ	Т	R	U	L	Т	R	U	L	T	R	
Priority	10	1	2	3	4U	4	5	6	1	7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0	
Configuration			т	TR		L	т			L		R					
Volume (veh/h)			549	207		100	390			51		165					
Percent Heavy Vehicles			[2				2		2					
Proportion Time Blocked				1					ĺ	1				1	1		
Right Turn Channelized	No No								1	٨	10		No				
Median Type	Undivided																
Median Storage																	
Delay, Queue Length, and	Level	of Se	rvice														
Flow Rate (veh/h)]		Τ	l	122			1	62		201			1		
Capacity			1	1		737		ĺ	1	132		547		1	Î		
v/c Ratio			1	1	1	0.17			1	0.47	Ì	0.37	[ĺ		
95% Queue Length		1	1		Ì	0.6	Ì		1	2.1		1.7	İ	1	1		
Control Delay (s/veh)			Î		1	10.9	1	<u> </u>	1	54.5		15.3		Ī			
Level of Service (LOS)]		в		ſ	1	F		с		1		1	
Approach Delay (s/veh)				*********			2.2		1	2	4.6			- <u></u>		****	
Approach LOS	А						*******	1		С				a anay da kana ana kana ing pangang pa			

Copyright © 2016 University of Florida. All Rights Reserved.

	HCS 2010 Two-Way Stop Control Summary Report											
General Information		Site Information										
Analyst	MSH	Intersection	Mt. Rose & Edmonton									
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT									
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway									
Analysis Year	2016	North/South Street	Edmonton Drive									
Time Analyzed	AM Existing	Peak Hour Factor	0.90									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description												

Lanes

Vehicle Volumes and Adj	ustmen	its				۰.											
Approach	Eastbou			astbound			Westbound				bound	*****	Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	т	R	U	L	Т	R	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	1	2	0	1	1	0	1		0	0	0	
Configuration			Т	TR		L	Т	1		L		R				[
Volume (veh/h)		ĺ	549	207	1	100	390	1	Ì	51	1	165		1		Ì	
Percent Heavy Vehicles				1		2			1	2		2					
Proportion Time Blocked								ĺ	Ì								
Right Turn Channelized		No				٩	١o		1	٨	10		No				
Median Type	1				Undivided												
Median Storage																	
Delay, Queue Length, and	l Level	of Se	rvice		÷												
Flow Rate (veh/h)		Ĩ				111	Ī	1		57	[183					
Capacity	Ì					791		1		161		582		ĺ		Ì	
v/c Ratio		Ì				0,14				0.35		0.31		Í			
95% Queue Length	Ì		1	1		0.5				1.5		1.3		1		1	
Control Delay (s/veh)		1	Î			10.3	1	1	Ì	39.0	1 (desi ilari 1997) - 74	14.0					
Level of Service (LOS)					1	В		1		E	1	В		Ì		Ì	
Approach Delay (s/veh)							2.1			1	9.9						
Approach LOS					1		A		1		С						

Copyright © 2016 University of Florida. All Rights Reserved.
	HCS 2010 Two-Way Stop (Control Summary R	eport
General Information		Site Information	
Analyst	MSH	Intersection	Mt. Rose & Edmonton
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway
Analysis Year	2016	North/South Street	Edmonton Drive
Time Analyzed	PM Existing	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description		ĸĸŢĸġĔĸĊĔĸŦĸĬĸĊĸĬĊĸĬĊĸĬĊĸŎĸŎŢŎĸŢĸĬĊŢĊŢŎĬĬŎŎŎŎŎŎŎŎĬŎŎŎŎŎŎŎŎŎŎ	
Lanes		alant 1 se i Contenen de Tan de La Contene de La Contene de La Contene de La Contene de La Contene de La Conten La Contene de La Contene de	

Major Street Last Wett

Vehicle Volumes and Adjust	stmen	its					e st sta									
Approach		East	bound			West	bound			North	bound			South	bound	
Movement	U	L	Τ	R	U	L	Т	R	Ų	L	т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	1.2
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0
Configuration		Ì	Т	TR		L	Т			L		R				
Volume (veħ/ħ)			631	19		121	594	ſ	ĺ	14	<u> </u>	65				
Percent Heavy Vehicles				[2	[2		2	ĺ			
Proportion Time Blocked			Ì						Î		ĺ					
Right Turn Channelized		1	No			٨	ło]	Ν	lo			1	٧o	
Median Type								Und	ivided			:				
Median Storage																
Delay, Queue Length, and	Level	of Se	rvice			a Ma										
Flow Rate (veh/h)		l				132				15		71				
Capacity						887	Î			133		642				1
v/c Ratio						0.15	ĺ			0.11	Ì	0.11				
95% Queue Length			1			0.5			1	0.4		0.4				
Control Delay (s/veh)						9.3				35.4		11.3				
Level of Service (LOS)		1				A	1	1		E		В				
Approach Delay (s/veh)						1	.7			1	5.5					
Approach LOS							A				c					

	HCS 2010 Two-Way Stop Control Summary Report										
General Information		Site Information									
Analyst	MSH	Intersection	Mt. Rose & Edmonton								
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT								
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway								
Analysis Year	2016	North/South Street	Edmonton Drive								
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.82								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description											
Lanes											

Vehicle Volumes and Adjust	stmen	Its														
Approach		Eastb	ound			West	bound	·····		North	bound			South	bound	weitin feite et die ee
Movement	U	L	T	R	U	L	т	R	U	L	T	R	U	L	T	R
Priority	10	1	2	- 3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0
Configuration			Т	TR		L	т			L		R				
Volume (veh/h)			549	209		113	390			56		205				
Percent Heavy Vehicles					ľ	2				2		2				
Proportion Time Blocked																
Right Turn Channelized		١	10			١	10			٨	lo			Ν	10	
Median Type								Undi	ivided							
Median Storage																
Delay, Queue Length, and	Level	of Se	rvice													
Flow Rate (veh/h)		1	T	Ī	T	138			1	68	1	250			ľ	Ι
Capacity		1	Ì			735	1	1	1	122		547				
v/c Ratio		1	1			0.19	1	1	1	0.56	<u> </u>	0.46				
95% Queue Length			1			0.7	İ		Ī	2.7		2.4				
Control Delay (s/veh)		ľ		1		11.0		[ĺ	66.6		17.0				
Level of Service (LOS)		1	1	1		В		Î	1	F		С]
Approach Delay (s/veh)		C		*****		2	2.5			2	7.6					
Approach LOS							A				D					

	HCS 2010 Two-Way Stop C	iontrol Summary R	eport
General Information		Site Information	
Analyst	MSH	Intersection	Mt. Rose & Edmonton
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway
Analysis Year	2016	North/South Street	Edmonton Drive
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Major Stiest Last West

Vehicle Volumes and Adjus	stmen	its														
Approach		Eastb	oound			West	bound		1	North	bound			South	bound	
Movement	υ	L	Т	R	U	L	Т	R	U	L	Т	R .	U	L	т	R
Priority	10	1	2	3	4U	4	5	6	1	7	8	9	1	10	11	12
Number of Lanes	0	0	2	0	0	1	2	0	1	1	0	1	1	0	0	0
Configuration			T	TR		L	Т		1	L		R				
Volume (veh/h)			549	209	Ì	113	390		1	56		205				
Percent Heavy Vehicles				1	Ì	2			Î	2		2				
Proportion Time Blocked								1			:					
Right Turn Channelized		١	٩o			1	١o			N	lo			1	10	
Median Type		78.97 militari dale di secondo			*****	de fan gegen gener fan fan ste ste ste fan fan fan fan fan fan fan fan fan fan		Und	livided							
Median Storage		****				*****	****									
Delay, Queue Length, and	Level	of Se	rvice													
Flow Rate (veh/h)]	1		126	Τ	T	1	62		228]]
Capacity			1	1	1	790	1	1	1	151		581			1	Ì
v/c Ratio						0.16		1	Ì	0.41	Î	0.39	<u> </u>	1		1
95% Queue Length			1		Í	0.6	Í	İ	1	1.8		1.9				
Control Delay (s/veh)		[1	Ì		10.4	1	1		44.6	[15.1				
Level of Service (LOS)		1		Î	Î	В		Î		E		с				
Approach Delay (s/veh)		çînderiyan çeşinderi			1	Ĩ	2.3		Ì	2	1.4				<u></u>	
Approach LOS				****	1		A		1		с					

	HCS 2010 Two-Way Stop Control Summary Report												
General Information		Site Information											
Analyst	MSH	Intersection	Mt. Rose & Edmonton										
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT										
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway										
Analysis Year	2016	North/South Street	Edmonton Drive										
Time Analyzed	PM Existing + Project	Peak Hour Factor	0.92										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description													

Major Street East West

Vehicle Volumes and Adju	stmen	ıts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	υ	L	Т	R	U	L	Т	R	U	L	т	R	U	L	т	R
Prìority	10	1	2	3	40	4	5	6	Ì	7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	1	2	0		1	0.	1		0	0	0
Configuration			т	TR		L	Т			L		R				
Volume (veh/h)			631	25		165	594		1	18		91				
Percent Heavy Vehicles		1				2				2		2				
Proportion Time Blocked																
Right Turn Channelized		١	٩o			1	10			٨	lo			٩	10	
Median Type								Und	ivided							
Median Storage														*****		
Delay, Queue Length, and	Level	of Se	rvice													
Flow Rate (veh/h)		Ī	1	1	[179		1	1	20		99				
Capacity	<u></u>		Í	Î		883	Ì	1		108	1	641	1			
v/c Ratio			Ì	ĺ	1	0.20	1	1	1	0.19	1	0.15		Í		
95% Queue Length	1		1	u Consta colocia i della		0.8	1			0.6		0.5				
Control Delay (s/veh)						10.1				45.8	<u> </u>	11.6			Τ	
Level of Service (LOS)	1	1	1	1		В			1	E	·	В				
Approach Delay (s/veh)	Ì	15 . <u>11</u>. 1. 1. 1. 1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	***********		1		2.2			1	7.4					
Approach LOS	[1		A				с					

	HCS 2010 Two-Way	Stop Control Summary R	eport	
General Information		Site Information		
Analyst	MSH	Intersection	Mt. Rose & Edmonton	,,,, ,
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT	
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway	
Analysis Year	2016	North/South Street	Edmonton Drive	
Time Analyzed	AM 2025 Base	Peak Hour Factor	0.82	
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25	
Project Description		,	ningen ander eine Breiten der Kristen under Kristen under Staten under Staten und die Kristen und die Staten Br	
Lanes			<u></u>	

Vehicle Volumes and A	djustmen	ts			at et d											
Approach		Eastb	oound		1	West	bound		T	North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	10	1	Z	3	4U	4	5	6	1	7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0
Configuration			Т	TR	<u> </u>	L	т			L		R				
Volume (veh/h)			637	240		116	453			59		191				
Percent Heavy Vehicles			1		Ì	2		Ì	Í	2		2				
Proportion Time Blocked			I													
Right Turn Channelized		Ν	۷o			1	10			Ν	lo			1	10	
Median Type								Und	ivided							
Median Storage																
Delay, Queue Length, a	and Level	of Se	rvice						•							
Flow Rate (veh/h)		[1			141				72		233				
Capacity	1		Ì		1	647		1		91		490				1
v/c Ratio					1	0.22	ĺ			0.79		0.48				
95% Queue Length		[ĺ		1	0.8	1	Ì	1	4.2		2.5				
Control Delay (s/veh)		<u> </u>	Ì	1	Ì	12.1	Ì	1	Î	126.1	1	18.8	Ì			
Level of Service (LOS)				1	1	В	Ì	1		F		с				1
Approach Delay (s/veh)		494192.0020077		F# 254999 240124			2.5			4	4.2					
Approach LOS			**********************************				A				E					

	HCS 2010 Two-Way Stop Control Summary Report											
General Information		Site Information										
Analyst	MSH	Intersection	Mt. Rose & Edmonton									
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT									
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway									
Analysis Year	2016	North/South Street	Edmonton Drive									
Time Analyzed	AM 2025 Base	Peak Hour Factor	0.90									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description												
Lanes		nge na den en en en en en en en en en en en en e										

Vehicle Volumes and A	djustmen	its				· .										
Approach		Eastb	pound	********		West	bound		Ĩ	North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0
Configuration			т	TR		L	T			L		R				
Volume (veh/h)			637	240		116	453			59		191				
Percent Heavy Vehicles						2				2		2				
Proportion Time Blocked																
Right Turn Channelized		1	٩٥			1	١o			N	lo			١	10	
Median Type								Und	ivided							
Median Storage												Aug. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				
Delay, Queue Length, a	and Level	of Se	rvice					: .								
Flow Rate (veh/h)			1	1	1	129		[[66		212				Ι
Capacity			1			703	1			116		526]
v/c Ratio						0.18	ĺ			0.57		0.40				
95% Queue Length						0.7	Ĩ	1		2.8		1.9				
Control Delay (s/veh)					1	11.3	1	1		71.3		16.4		1	1	[
Level of Service (LOS)	1	[Ì	1		В	ľ	1		F		С				
Approach Delay (s/veh)	Ì				1		2.3		1	2	9.4				**********	

Approach LOS

А

D

HCS 2010 Two-Way Stop Control Summary Report										
General Information		Site Information								
Analyst	MSH	Intersection	Mt. Rose & Edmonton							
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT							
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway							
Analysis Year	2016	North/South Street	Edmonton Drive							
Time Analyzed	PM 2025 Base	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description										

,

Vehicle Volumes and Adjustments Westbound Eastbound Northbound Southbound Approach U L τ R U Т R U Ł Т R υ L Т R Movement L 10 7 9 1 2 3 4U 5 6 8 10 11 12 4 Priority Number of Lanes 2 0 Û 0 0 0 0 2 0 0 1 0 1 1 Configuration Т ΤR L Т L R 732 75 Volume (veh/h) 22 140 689 16 2 2 2 Percent Heavy Vehicles Proportion Time Blocked **Right Turn Channelized** No No No No Median Type Undivided Median Storage Delay, Queue Length, and Level of Service 152 17 82 Flow Rate (veh/h) 93 591 805 Capacity 0.19 0.18 0.14 v/c Ratio 0.7 0.6 0.5 95% Queue Length Control Delay (s/veh) 10.5 51.9 12.1 Level of Service (LOS) В F В Approach Delay (s/veh) 1.8 18.9 С Approach LOS А

Copyright © 2016 University of Florida. All Rights Reserved.

Lanes

	HCS 2010 Two-Way Stop Control Summary Report										
General Information		Site Information									
Analyst	MSH	Intersection	Mt. Rose & Edmonton								
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT								
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway								
Analysis Year	2016	North/South Street	Edmonton Drive								
Time Analyzed	AM 2025 Base + Project	Peak Hour Factor	0.82								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description											

alweissenson (streensone iste Major Streen Cast-West

Vehicle Volumes and Adjustments				소설비설 소리는 전체 전문 위에는 것이다. 이 바람이 있는 것이 아파 이 가지 않는 것이다. 이 바람이 있는 것이 아파 이 아파 이 아파 이 아파 이 아파 이 아파 이 아파 이 아													
Approach		East	bound		Westbound					Northbound				Southbound			
Movement	U	L	т	R	U	L	Т	R	U	L	Ţ	R	U	L	T	R	
Priority	10	1	2	3	4U	4	5	6	1	7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0	
Configuration			Т	TR		L	Т			L		R					
Volume (veh/h)			637	242		129	453			64		231					
Percent Heavy Vehicles	Í		[[2				2		2					
Proportion Time Blocked									[[
Right Turn Channelized		No				No				10 No							
Median Type		Undivided															
Median Storage																	
Delay, Queue Length, a	and Level	of Se	rvice						ja se se se se se se se se se se se se se				가 가 가 지 지 지 성 제 자				
Flow Rate (veh/h)		Ι	1]	157	Ι	T	1	78		282					
Capacity			1	T	1	646		l		84		489					
v/c Ratio		Ì	1		1	0.24	ĺ	1	1	0.93		0.58					
95% Queue Length	Í	Ì	1		ĺ	0.9	Í	Î	1	5.1		3.6					
Control Delay (s/veh)	1			1	ĺ	12.4		1		168.3		21.9					
Level of Service (LOS)						В]	F C								
Approach Delay (s/veh)							2.7		53.6								
Approach LOS							A			F							

	HCS 2010 Two-Way Stop Control Summary Report										
General Information		Site Information									
Analyst	MSH	Intersection	Mt. Rose & Edmonton								
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT								
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway								
Analysis Year	2016	North/South Street	Edmonton Drive								
Time Analyzed	AM 2025 Base + Project	Peak Hour Factor	0.90								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description											
Lanes											

Vehicle Volumes and Ac	ljustmen	its														
Approach		Eastl	bound			West	bound		Northbound				Southbound			
Movement	υ	L	Т	R	U	L	т	R	U	L	Т	R	U	L	т	R
Prìority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				L
Volume (veh/h)			637	242		129	453			64		231				
Percent Heavy Vehicles						2				2		2			ļ	<u> </u>
Proportion Time Blocked									<u> </u>		ļ					
Right Turn Channelized		No				٨	10			١	10			١	10	
Median Type		Undivided											*****	Aled Balantan Sand Juri a		
Median Storage										iid dhaaleys maa saacqa						
Delay, Queue Length, a	nd Level	of Se	rvice						-							
Flow Rate (veh/h)						143				71		257				
Capacity	1					702				108		526				
v/c Ratio				Î		0.20				0.66		0.49				
95% Queue Length						0.8				3.3		2.7				
Control Delay (s/veh)		Γ		1		11.4				87.2		18.2			ļ	
Level of Service (LOS)						В				F		С				
Approach Delay (s/veh)		2.5					33.2									
Approach LOS		A				D										

HC\$ 2010 Two-Way Stop Control Summary Report									
General Information		Site Information							
Analyst	MSH	Intersection	Mt. Rose & Edmonton						
Agency/Co.	Solaegui Engineers	Jurisdiction	NDOT						
Date Performed	1/6/2016	East/West Street	Mt. Rose Highway						
Analysis Year	2016	North/South Street	Edmonton Drive						
Time Analyzed	PM 2025 Base + Project	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						

Vehicle Volumes and Adjustments		ts							e de la composición de la comp							
Approach		Eastb	tbound Westbound					Northbound				Southbound				
Movement	Ų	L	Т	R	Ų	L	Т	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			732	28		184	689			20		101				
Percent Heavy Vehicles						2				2		2				
Proportion Time Blocked																
Right Turn Channelized		No				١	10			Ν	lo			1	٩٥	
Median Type		Undivided												والاعتراب والمراجعة		
Median Storage													-			
Delay, Queue Length, ai	nd Level	of Se	rvice													
Flow Rate (veh/h)]			200				22		110				
Capacity			1			801			1	74		588				
v/c Ratio						0.25			1	0.30		0.19				
95% Queue Length						1.0	Ì			1.1		0.7				
Control Delay (s/veh)						11.0	I	[72.8		12.5				
Level of Service (LOS)]				В	Ì	Ì		F		8				
Approach Delay (s/veh)			2.3				22.6									
Approach LOS				A				с								

Copyright © 2016 University of Florida. All Rights Reserved.

Lanes

	Report		
General Information		Site Information	
Analyst	MSH	Intersection	Edmonton & Butch Cassidy
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive
Analysis Year	2016	North/South Street	Edmonton Drive
Time Analyzed	AM Existing	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Vehicle Volumes and A	djustmen	its							· · .						. t.	•
Approach		Eastb	ound			West	bound		Northbound				Southbound			
Movement	U	ι	Т	R	U	L	т	R	υ	L	Т	R	U	L	Т	R
Priority		10	11	12	Ì	7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	1	1	0
Configuration							LR					TR		L	Т	
Volume (veh/h)			I			9		37			179	52		298	9	
Percent Heavy Vehicles						2		2						2		
Proportion Time Blocked										1						
Right Turn Channelized		No				No			1	٩o			N	lo		
Median Type		Undivided														
Median Storage			~~~~~													
Delay, Queue Length, a	and Level	of Se	rvice													
Flow Rate (veh/h)							56							363		
Capacity]	1		1	981		1					1281		
v/c Ratio	Ì	ĺ	ĺ				0.06	Î	ĺ		1			0.28		
95% Queue Length			1		1		0.2	Ì						1.2		
Control Delay (s/veh)		1	Γ	1	1	1	8.9							8.9		
Level of Service (LOS)							A		1					A		
Approach Delay (s/veh)				*******		************	8.9							8	.7	
Approach LOS		A				A										

HCS 2010 Two-Way Stop Control Summary Report										
General Information		Site Information								
Analyst	МЅН	Intersection	Edmonton & Butch Cassidy							
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County							
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive							
Analysis Year	2016	North/South Street	Edmonton Drive							
Time Analyzed	AM Existing	Peak Hour Factor	0.90							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description										

Vehicle Volumes and A	djustmer	nts														
Approach		Easte	ound			West	bound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority		10	11	12	1	7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	1	1	0
Configuration				1			LR					TR		L	т	1
Volume (veh/h)		<u> </u>			1	9		37	ĺ		179	52		298	9	
Percent Heavy Vehicles				[[2		2					- 21 million - 6.2 mm 2 mm 2 mm 2 mm	2		
Proportion Time Blocked		Î		<u> </u>	1		1			1		Î	<u> </u>			
Right Turn Channelized		No No								1	٧o			٨	10	Redak esta para reac
Median Type		Undivided														
Median Storage																
Delay, Queue Length, a	ind Level	of Sei	vice													
Flow Rate (veh/h)							51							331		
Capacity							1009		1	1	1			1307		
v/c Ratio			l				0.05				1	Ì		0.25		
95% Queue Length							0.2	Í						1.0		
Control Delay (s/veh)							8.8							8.7		
Level of Service (LOS)						1	A							A		
Approach Delay (s/veh)		8.8												8	.4	
Approach LOS		А													Ą	

	HCS 2010 Two-Way Stop Control Summary Report										
General Information		Site Information									
Analyst	MSH	Intersection	Edmonton & Butch Cassidy								
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County								
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive								
Analysis Year	2016	North/South Street	Edmonton Drive								
Time Analyzed	PM Existing	Peak Hour Factor	0.92								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	· · · · · · · · · · · · · · · · · · ·										

/ehicle Volumes and Adjustments																
Approach		Eastb	ound			West	oound		1	Northbound				South	bound	
Movement	U	L	Т	R	U	L	т	R	U	L	т	R	U	L	т	R
Priority		10	11	12		7	8	9	10	1	2	3	4Ų	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	1	1	0
Configuration			<u> </u>	1			LR					TR		L	Т	
Volume (veh/h)	1	ĺ		ſ	Ì	14	1	7		1	72	4		18	122	
Percent Heavy Vehicles				Ì		2		2						2		
Proportion Time Blocked																
Right Turn Channelized		4	10			1	No No							1	lo	
Median Type								Ųnd	livided							
Median Storage																
Delay, Queue Length, a	nd Level	of Se	rvice													
Flow Rate (veh/h)		Ĭ	l				23							20		
Capacity		Ì	Ì	1			1113	1						1514		
v/c Ratio		Ì	1	1	1	1	0.02	1		1				0.01]	
95% Queue Length	1	1	1		1	1	0.1	Í						0.0		
Control Delay (s/veh)		1	Ì		Î		8.3							7.4]
Level of Service (LOS)	1	1	1			T	A			ſ				A		
Approach Delay (s/veh)													1		1.0	

Copyright © 2016 University of Florida. All Rights Reserved.

Approach LOS

А

A Generated: 1/14/2016 12:04:18 Plv

	HCS 2010 Two-Way Sto	HCS 2010 Two-Way Stop Control Summary Report											
General Information		Site Information											
Analyst	MSH	Intersection	Edmonton & Butch Cassidy										
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County										
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive										
Analysis Year	2016	North/South Street	Edmonton Drive										
Time Analyzed	AM 2025 Base	Peak Hour Factor	0.82										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description		<u>n - , , , , , , , , , , , , , , , , , , </u>											
Lanes			Landar e Bany Tarpan Multin Bar et Banin ny Marine Dispanse Burney and Angel Bang Bara										

Vehicle Volumes and Adju	stmen	n ts														e tigen. A stadta	
Approach		Eastb	ound			West	oound			North	bound			South	bound		
Movement	U	L	ĩ	R	U	L	Т	R	U	Ĺ	Т	R	U	L	т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	1	1	0	
Configuration]						LR				<u> </u>	TR		L	Т		
Volume (veh/h)				<u> </u>	<u> </u>	10		43	<u> </u>	<u> </u>	207	60		346	10		
Percent Heavy Vehicles						2		2						2			
Proportion Time Blocked														<u> </u>			
Right Turn Channelized		١	10		No					١	10		No				
Median Type								Und	ivided								
Median Storage												,·					
Delay, Queue Length, and	Level	of Sei	rvice														
Flow Rate (veh/h)							64							422			
Capacity							775							1234			
v/c Ratio							0.08							0.34		<u> </u>	
95% Queue Length							0.3							1.5			
Control Delay (s/veh)							10.1							9.4			
Level of Service (LOS)							В							A			
Approach Delay (s/veh)						1	0.1						9.2				
Approach LOS						В								A			

HCS 2010 Two-Way Stop Control Summary Report										
	Site Information									
MSH	Intersection	Edmonton & Butch Cassidy								
Solaegui Engineers	Jurisdiction	Washoe County								
1/6/2016	East/West Street	Butch Cassidy Drive								
2016	North/South Street	Edmonton Drive								
AM 2025 Base	Peak Hour Factor	0.90								
North-South	Analysis Time Period (hrs)	0.25								
<u>na pro na mana da ante de la constitución de la la constitución de constitución de la constitución de la consti A constitución de la constitución de la constitución de la constitución de la constitución de la constitución de</u>	y y y y waar oo dhaa dhaa dhaa ah ah ah ah ah ah ah ah ah ah ah ah									
	HCS 2010 Two-Way MSH Solaegui Engineers 1/6/2016 2016 AM 2025 Base North-South	HCS 2010 Two-Way Stop Control Summary P Site Information MSH Intersection Solaegui Engineers Jurisdiction 1/6/2016 East/West Street 2016 North/South Street AM 2025 Base Peak Hour Factor North-South Analysis Time Period (hrs)								

Vehicle Volumes and Adjustments																	
Approach		Eastb	ound			West	bound		Northbound					South	bound		
Movement	U	L	Γ	R	U	L	т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	1	1	0	
Configuration							LR					TR		L	T	6.01.000000	
Volume (veh/h)						10		43			207	60		346	10		
Percent Heavy Vehicles						2		2						2			
Proportion Time Blocked																	
Right Turn Channelized		Ν	lo		No					١	ło		No				
Median Type								Undi	vided								
Median Storage																· · · · · · · · · · · · · · · · · · ·	
Delay, Queue Length, and	Level	of Sei	vice														
Flow Rate (veh/h)							59							384			
Capacity							950							1263			
v/c Ratio					1	Ì	0.06							0.30			
95% Queue Length		1					0.2							1.3			
Control Delay (s/veh)							9.0							9,1			
Level of Service (LOS)							A						}	A			
Approach Delay (s/veh)					9.0							8.8					
Approach LOS					A							A					

	HCS 2010 Two-Way Stop C	Control Summary Re	port
General Information		Site Information	
Analyst	MSH	Intersection	Edmonton & Butch Cassidy
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive
Analysis Year	2016	North/South Street	Edmonton Drive
Time Analyzed	PM 2025 Base	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			na a la de travesta de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de m

Vehicle Volumes and Adju	ıstmer	its															
Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	т	R	U	L	т	R	U	L	т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1∪	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	0	0	0	0	1	0	0	1	1	0	
Configuration							LR					TR		L	т	*****	
Volume (veh/h)						16		8			83	5		21	141		
Percent Heavy Vehicles						2		2	ļ					2			
Proportion Time Blocked									Į								
Right Turn Channelized		N	10			N	10			N	10			٨	10		
Median Type								Undi	ivided								
Median Storage										-		terrans and an an article	AND	Association and a starting	1	(mana) ng mga kan Palabaka	
Delay, Queue Length, and	l Level	of Sei	rvice														
Flow Rate (veh/h)							26						<u></u>	23	<u> </u>		
Capacity							1052]	1498			
v/c Ratio							0.02							0.02			
95% Queue Length							0.1							0.0			
Control Delay (s/veh)							8.5							7.4			
Level of Service (LOS)							A							A			
Approach Delay (s/veh)		8.5						.5						1.0			
Approach LOS		A											A				

	HCS 2010 Two-Way Stop Control Summary Report												
General Information		Site Information											
Analyst	мѕн	Intersection	Edmonton & Butch Cassidy										
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County										
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive										
Analysis Year	2016	North/South Street	Edmonton Drive										
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.82										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description			nyy 5 2000 a 1990 a 1990 a 1990 a 1990 a 1990 a 1990 a 1990 a 1990 a 1990 a 1990 a 1990 a 1990 a 1990 a 1990 a										

Vehicle Volumes and Ac	ljustmer	its								Ray					· ·.		
Approach		Eastl	bound			West	bound		ſ	North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	т	R	U	L	т	R	
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	1	1	0	
Configuration			LTR				LTR		1		LTR]		L		TR	
Volume (veh/h)		45	8	0		9	3	37	Ì	0	179	52		298	9	15	
Percent Heavy Vehicles		2	2	2		2	2	2		2		ſ	(<u>)</u>	2			
Proportion Time Blocked		1		1	Ì			ĺ	1	[1	<u> </u>	Î	1	
Right Turn Channelized		No				No				٨	10		No				
Median Type								Und	ivided		*****					****	
Median Storage							rii a pini na min										
Delay, Queue Length, a	nd Level	of Se	rvice											:	natrovskou na tu druh		
Flow Rate (veh/h)		1	65			Ī	60			Ι	~~~~~			363	[1	
Capacity		Ì	157			Î	671			1583				1281			
v/c Ratio		Ì	0.41		Ì	<u> </u>	0.09	1	Ì	1	ĺ	Ì		0.28		1	
95% Queue Length			1.8	Ì	Ì		0.3	Ì	1					1.2		1	
Control Delay (s/veh)			43.1	<u> </u>	İ –		10.9	1	1	7.3			1	8.9	<u> </u>	1	
Level of Service (LOS)			E	1	1	1	В			А		1	1	A		1	
Approach Delay (s/veh)		4	3.1		10.9							8,3					
Approach LOS		E				В							A				

	HCS 2010 Two-Way Stop	Control Summary R	eport
General Information		Site Information	
Analyst	MSH	Intersection	Edmonton & Butch Cassidy
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive
Analysis Year	2016	North/South Street	Edmonton Drive
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description		<u></u>	
Lanes			

이 가 대학생님이 있어?	이는 사람을 많는 것이	그는 그는 그는 것을 물었다.			1. se 1. i -
Vohicla	Volumer	and Adi	lictmo	ante 🔅	1.1.1.1.1.1.1
A GUICIG	volumes	unu mu	asam		

	Eastb	ound			West	bound			North	bound			South	bound		
U	L	т	R	U	L	Т	R	U	L	т	R	U	L	T	R	
1	10	11	12		7	8	9	10	1	2	3	4U	4	5	6	
	0	1	0	1	0	1	0	0	0	1	0	0	1	1	0	
		LTR				LTR				LTR			Ľ		TR	
	45	8	0		9	3	37		0	179	52		298	9	15	
	2	2	2		2	2	2		2				2			
	ſ															
	Ν	10			١	No			1	10			٨	lo		
							Undi	ivided								
Level	of Sei	vice										·:·				
	<u> </u>	59		1		54	[1				331			
]	189				826			1586				1307			
	Î .	0.31		1		0.07		ſ					0.25			
		1.3				0.2			1				1.0			
		32.6				9.7			7.3				8.7			
		D				А			A				А			
	3	2.6		9.7							8.0					
D					A						A					
		Eastb U L 10 45 2 	Eastburd U L 10 11 0 1 10 1 10 1 10 1 10 1 10 1 10 1 11 0 11 0 11 1 11 1 12 2 12 2 13 1 14 59 189 0.31 1.3 32.6 1 1.3 32.6 D	Eastbund U L T R 10 11 12 0 11 0 10 11 0 0 1 0 45 8 0 2 2 2 0 1 0 45 8 0 2 2 2 0 1 1 No	Eastbund R U U L T R U 10 11 12 10 0 1 0 1 10 10 11 12 10 11 0 1 0 1 10 11 12 0 1 10 10 LTR 0 10 10 45 8 0 2 2 2 2 2 2 2 2 10 10 1 1 1 1 1 No Interview Interview 10 1 S9 Interview Interview 189 Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview <td c<="" td=""><td>Eastbound West U L T R U L 10 11 12 7 0 1 0 0 0 1 0 0 10 11 12 7 0 1 0 0 11 0 0 0 0 1 0 0 11 0 0 0 11 0 0 0 11 12 10 0 11 0 0 0 12 2 2 10 12 12 2 2 2 2 13 10 10 10 13 13 10 10 13 0 10 10 13 0 10 10 13 0 10 10 13 0 10 10 13 0 10 10 10 <</td><td>Eastbund Westbund U L T R U L T 10 11 12 7 8 0 1 0 0 1 0 1 0 0 1 10 LTR 0 0 1 45 8 0 9 3 2 2 2 2 2 2 10 1 1 1 1 1 1 45 8 0 9 3 3 3 2 2 2 2 2 2 2 10 1 1 1 1 1 1 No No No No No No No No No No No S Interview S S S S 189 1 1 0.02 0.2 0.2 Interview 32.6</td><td>Eastbund Westbound U L T R U L T R 10 11 12 7 8 9 0 1 0 10 1 0 10 11 12 7 8 9 0 1 0 0 1 0 45 8 0 9 3 37 2 2 2 2 2 2 2 10 1 1 1 1 1 0 1 0 45 8 0 9 3 37 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>Eastbund Westbund I T R U L T R U 10 11 12 7 8 9 1U 0 1 0 0 1 0 0 0 1 0 0 1 0 0 40 LTR 0 0 1 0 0 45 8 0 9 3 37 1 45 8 0 9 3 37 1 45 8 0 9 3 37 1 45 8 0 1 10 1 1 11 12 2 2 2 2 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3</td><td>Eastbound Westbound North U L T R U L T R U L 10 11 12 7 8 9 1U 1 0 1 0 0 1 0 0 1 0 0 10 11 0 0 0 1 0 0 0 0 10 11 0 0 0 1 0 0 0 0 11 0 1 0 0 1 0 0 0 0 11 0 1 0 0 1 0 0 0 0 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>Eastbound Westbound Nortbound U L T R U L T R U L T 10 11 12 7 8 9 1U 1 2 0 11 0 0 1 00 1 0 1 2 0 1 0 0 1 0 0 1 2 1 2 0 1 0 0 1 0 0 1 2 1 2 10 1 0 0 1 0 1 0 0 1 2 11 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>Eastbund Westbund Northbund U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R I R R I R I R I R I R I R I R I R I R I I R I I I R I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I</td><td>Eastburd Westburd Nortburd No U L T R U L T R U 10 11 12 C 7 8 9 1U 1 2 3 4U 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Eastbound Westbound Northbound T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L I I I I I I I I I I I I I I I I I <thi< th=""> I<!--</td--><td>Eastburnt Westburnt Northurnt Southurnt Southurnt U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L R</td></thi<></td></td>	<td>Eastbound West U L T R U L 10 11 12 7 0 1 0 0 0 1 0 0 10 11 12 7 0 1 0 0 11 0 0 0 0 1 0 0 11 0 0 0 11 0 0 0 11 12 10 0 11 0 0 0 12 2 2 10 12 12 2 2 2 2 13 10 10 10 13 13 10 10 13 0 10 10 13 0 10 10 13 0 10 10 13 0 10 10 13 0 10 10 10 <</td> <td>Eastbund Westbund U L T R U L T 10 11 12 7 8 0 1 0 0 1 0 1 0 0 1 10 LTR 0 0 1 45 8 0 9 3 2 2 2 2 2 2 10 1 1 1 1 1 1 45 8 0 9 3 3 3 2 2 2 2 2 2 2 10 1 1 1 1 1 1 No No No No No No No No No No No S Interview S S S S 189 1 1 0.02 0.2 0.2 Interview 32.6</td> <td>Eastbund Westbound U L T R U L T R 10 11 12 7 8 9 0 1 0 10 1 0 10 11 12 7 8 9 0 1 0 0 1 0 45 8 0 9 3 37 2 2 2 2 2 2 2 10 1 1 1 1 1 0 1 0 45 8 0 9 3 37 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>Eastbund Westbund I T R U L T R U 10 11 12 7 8 9 1U 0 1 0 0 1 0 0 0 1 0 0 1 0 0 40 LTR 0 0 1 0 0 45 8 0 9 3 37 1 45 8 0 9 3 37 1 45 8 0 9 3 37 1 45 8 0 1 10 1 1 11 12 2 2 2 2 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3</td> <td>Eastbound Westbound North U L T R U L T R U L 10 11 12 7 8 9 1U 1 0 1 0 0 1 0 0 1 0 0 10 11 0 0 0 1 0 0 0 0 10 11 0 0 0 1 0 0 0 0 11 0 1 0 0 1 0 0 0 0 11 0 1 0 0 1 0 0 0 0 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>Eastbound Westbound Nortbound U L T R U L T R U L T 10 11 12 7 8 9 1U 1 2 0 11 0 0 1 00 1 0 1 2 0 1 0 0 1 0 0 1 2 1 2 0 1 0 0 1 0 0 1 2 1 2 10 1 0 0 1 0 1 0 0 1 2 11 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>Eastbund Westbund Northbund U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R I R R I R I R I R I R I R I R I R I R I I R I I I R I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I</td> <td>Eastburd Westburd Nortburd No U L T R U L T R U 10 11 12 C 7 8 9 1U 1 2 3 4U 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Eastbound Westbound Northbound T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L I I I I I I I I I I I I I I I I I <thi< th=""> I<!--</td--><td>Eastburnt Westburnt Northurnt Southurnt Southurnt U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L R</td></thi<></td>	Eastbound West U L T R U L 10 11 12 7 0 1 0 0 0 1 0 0 10 11 12 7 0 1 0 0 11 0 0 0 0 1 0 0 11 0 0 0 11 0 0 0 11 12 10 0 11 0 0 0 12 2 2 10 12 12 2 2 2 2 13 10 10 10 13 13 10 10 13 0 10 10 13 0 10 10 13 0 10 10 13 0 10 10 13 0 10 10 10 <	Eastbund Westbund U L T R U L T 10 11 12 7 8 0 1 0 0 1 0 1 0 0 1 10 LTR 0 0 1 45 8 0 9 3 2 2 2 2 2 2 10 1 1 1 1 1 1 45 8 0 9 3 3 3 2 2 2 2 2 2 2 10 1 1 1 1 1 1 No No No No No No No No No No No S Interview S S S S 189 1 1 0.02 0.2 0.2 Interview 32.6	Eastbund Westbound U L T R U L T R 10 11 12 7 8 9 0 1 0 10 1 0 10 11 12 7 8 9 0 1 0 0 1 0 45 8 0 9 3 37 2 2 2 2 2 2 2 10 1 1 1 1 1 0 1 0 45 8 0 9 3 37 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Eastbund Westbund I T R U L T R U 10 11 12 7 8 9 1U 0 1 0 0 1 0 0 0 1 0 0 1 0 0 40 LTR 0 0 1 0 0 45 8 0 9 3 37 1 45 8 0 9 3 37 1 45 8 0 9 3 37 1 45 8 0 1 10 1 1 11 12 2 2 2 2 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3	Eastbound Westbound North U L T R U L T R U L 10 11 12 7 8 9 1U 1 0 1 0 0 1 0 0 1 0 0 10 11 0 0 0 1 0 0 0 0 10 11 0 0 0 1 0 0 0 0 11 0 1 0 0 1 0 0 0 0 11 0 1 0 0 1 0 0 0 0 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Eastbound Westbound Nortbound U L T R U L T R U L T 10 11 12 7 8 9 1U 1 2 0 11 0 0 1 00 1 0 1 2 0 1 0 0 1 0 0 1 2 1 2 0 1 0 0 1 0 0 1 2 1 2 10 1 0 0 1 0 1 0 0 1 2 11 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Eastbund Westbund Northbund U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R I R R I R I R I R I R I R I R I R I R I I R I I I R I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	Eastburd Westburd Nortburd No U L T R U L T R U 10 11 12 C 7 8 9 1U 1 2 3 4U 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Eastbound Westbound Northbound T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L I I I I I I I I I I I I I I I I I <thi< th=""> I<!--</td--><td>Eastburnt Westburnt Northurnt Southurnt Southurnt U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L R</td></thi<>	Eastburnt Westburnt Northurnt Southurnt Southurnt U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L R

retobald an excercic de qué a sete	These zoace this way sto	e control semmery is	sepont.
General Information		Site Information	
Analyst	MSH	Intersection	Edmonton & Butch Cassidy
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive
Analysis Year	2016	North/South Street	Edmonton Drive
Time Analyzed	PM Existing + Project	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Lanes			ng fan yn yr fel mei ylan ar an ar a far fan de den ar an fai far dy far far fan far fan fan de fan de fan de Yn ar fan yn fan yn fan ar fan fan de fan de fan de fan de fan de fan fan fan de fan de fan de fan de fan de fan

Vehicle Volumes and A	djustmer	its														
Approach		Eastl	ound		T	West	bound		Γ	North	bound		Southbound			
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority		10	11	12	1	7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0	1	0	1	0	0	0	1	0	0	1	1	0
Configuration		ſ	LTR	1	1	Í	LTR		Ì	1	LTR		1	L.		TR
Volume (veh/h)		30	5	0		14	9	7		0	72	4		18	122	50
Percent Heavy Vehicles	1	2	2	2	1	2	2	2	1	2		· · · · · ·	1	2		1
Proportion Time Blocked			1					1	1						1	1
Right Turn Channelized		No No No						١	10	<i>011</i>						
Median Type		Undivided										****				
Median Storage																
Delay, Queue Length, a	and Level	of Se	rvice													
Flow Rate (veh/h)			38			1	33		1	1	[T	1	20		T
Capacity			639		Î	Î	863	1	1	1386				1514	1	
v/c Ratio		 	0.06	Î	1	1	0.04	ĺ	Î	1				0.01	1	1
95% Queue Length			0.2	Ì	1	1	0.1	Î				1	ĺ	0.0		-
Control Delay (s/veh)			11.0	1			9.3	1	1	7.6			1	7.4	1	-
Level of Service (LOS)			В				A		1	A		1	1	A	Ì	
Approach Delay (s/veh)		1	1.0		1	(9.3	- 2	1		***		0.7			
Approach LOS	[В А				Pad 1944 In Pay Playing 1	Α									

General Information		Site Information	A 같이 있다는 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않을까? 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 가지 않을까?
Analyst	MSH	Intersection	Edmonton & Butch Cassidy
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive
Analysis Year	2016	North/South Street	Edmonton Drive
Time Analyzed	AM 2025 Base + Project	Peak Hour Factor	0.82
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Major Street North South

Vehicle Volumes and Ad	ljustmer	nts									e Balanta Balanta			1999 1999		
Approach		Eastb	ound			West	bound			North	ibound			South	bound	
Movement	U	L	Т	R	U	L	Ť	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	1	1	0
Configuration			LTR				LTR		Γ	1	LTR	Γ		L		TR
Volume (veh/h)		45	8	0		10	3	43		0	207	60		346	10	15
Percent Heavy Vehicles		2	2	2		2	2	2	<u> </u>	2	1			2		1
Proportion Time Blocked										1	1			1		
Right Turn Channelized		No				١	٥V			1	٧o			Ν	10	<u> </u>
Median Type		Undivided								*****						
Median Storage																
Delay, Queue Length, ar	nd Level	of Se	vice													
Flow Rate (veh/h)			65				68		Î					422		
Capacity			113	ĺ			517			1582	1			1234		
v/c Ratio			0.57				0.13		Ĩ	1	1		Î	0.34	[Î
95% Queue Length			2.8				0.5		1	Î	1			1.5		-
Control Delay (s/veh)			73.0				13.0	<u> </u>	1	7.3	1	1	1	9.4		
Level of Service (LOS)			F	1			В		1	A		ĺ		A		1
Approach Delay (s/veh)		7.	3.0	-2		1	3.0	******	1					8	.8	
Approach LOS			F	F B											A	

	HCS	5 201	0 Tw	0-W/	ay Sii	op Co	omine	ll Skuir	nmai	y Re	pont						
General Information							Site I	nform	ation						- A. (1997) - A. (1997) - A. (1997)		
Analyst	MSH	<u></u>			evos 7 gos (s s c		Interse	ction			Edmor	nton & B	utch Cas	utch Cassidy			
Agency/Co.	Solaec	ui Engin	eers				Jurisdiction Washoe County						,	1991.CoVA -6 1			
Date Performed	1/6/20)16					East/West Street Butch Cassidy Drive										
Analysis Year	2016						North/South Street Edmonton Drive					/e					
Time Analyzed	AM 20)25 Base	+ Projec	t			Peak Hour Factor 0.90										
Intersection Orientation	North	-South					Analysis Time Period (hrs) 0.25										
Project Description																	
					A A Major	A L V V V V V V V V V V V V V V V V V V V	att-South		化异丙酮 化化合物 化化合物 化化合物 化合物化合物 化合物化合物								
Vehicle Volumes and A	djustmen	its										:					
Approach		Eastb	ound	s	L	West	bound		ļ	North	bound			South	thoound		
Movement	U	ι	Т	R	υ	L	T	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	1	1	0	
Configuration		ļ	LTR	ļ	ļ	ļ	LTR		ļ		LTR			L		TR	
Volume (veh/h)		45	8	0		10	3	43	ļ	0	207	60		346	10	15	
Percent Heavy Vehicles		2	2	2	<u> </u>	2	2	2	ļ	2			ļ	2		ļ	
Proportion Time Blocked		<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>		
Right Turn Channelized		Ν	10		<u>]</u>	1	٧o			l	No			١	10	rienterüht deser.	
Median Type								Und	ivided								
Median Storage																	
Delay, Queue Length,	and Level	of Sei	rvice														
Flow Rate (veh/h)		T	59]	1	l	62	1						384			
Capacity		1	141	1	Ì		665	İ	1	1584]	T		1263			
v/c Ratio		1	0.42	1	1	1	0.09	1		Ì	Ī	1	1	0.30			
95% Queue Length			1,8	1	1	1	0.3	Í		1	1		1	1.3	1		
Control Delay (s/veh)		1	47.8	1	1	1	11.0	<u> </u>	1	7.3	1		1	9.1			
Level of Service (LOS)		1	E	1	1	1	В	1	1	A	1			A			
Approach Delay (s/yeh)																	

E

Approach LOS

В

	HCS 2010 Two-Way S	Stop Control Summary R	eport
General Information		Site Information	
Analyst	MSH	Intersection	Edmonton & Butch Cassidy
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	1/6/2016	East/West Street	Butch Cassidy Drive
Analysis Year	2016	North/South Street	Edmonton Drive
Time Analyzed	PM 2025 Base + Project	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description		<u></u>	
NAME AND ADDRESS OF THE OWNER ADDRESS OF THE OWNER ADDRESS OF THE OWNER ADDRESS OF THE OWNER ADDRESS OF THE OWNER			

Vehicle Volumes and A	ljustmer	ıts									•		•			
Approach		Eastb	ound		<u> </u>	West	bound			North	bound			South	oound	
Movement	U	L	т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	1	1	0
Configuration			LTR]	LTR				LTR			L		TR
Volume (veh/h)		30	5	0		16	9	8		0	83	5		21	141	50
Percent Heavy Vehicles		2	2	2		2	2	2		2				2		
Proportion Time Blocked																
Right Turn Channelized		٩	٧o			1	٧o			N	٧o		No			
Median Type				maticana de atalante da			here the second section.	Und	divided							
Median Storage												KOMPANIA ANA				
Delay, Queue Length, a	nd Level	of Se	rvice													
Flow Rate (veh/h)			38				36							23		
Capacity	· .		601				830			1363				1498		
v/c Ratio			0.06				0.04							0.02		
95% Queue Length		1	0,2			Í	0.1	[0.0		
Control Delay (s/veh)		1	11.4				9.5	T	T	7.6				7.4	1	1

Copyright © 2016 University of Florida. All Rights Reserved.

Level of Service (LOS)

Approach Delay (s/veh)

Approach LOS

9.5

А

В

11.4

В

A

А

0.7

А

AN THE REPORT

COLINA ROSA TENTATIVE SUBDIVISION MAP 94 SINGLE FAMILY RESIDENTIAL LOTS

PRELIMINARY HYDROLOGY REPORT

PREPARED FOR: TOWNE DEVELOPMENT OF SACRAMENTO, Inc

PREPARED BY

JOB #: KLS.011 DATE: 1/13/2016

Table of Contents

1. Intr	oduction1
1.1.	Site Description1
2. Pro	cedures1
2.1.	Methodology1
2.2.	Hydraulic Analyses1
2.3.	Time of Concentration1
2.4.	Flood Zones2
3. Exis	ting Runoff Conditions2
3.1.	Existing Storm Drain System2
3.2.	Adjacent Runoff Areas2
3.2.1.	Basin to the North2
3.2.2.	Basin to the East2
3.2.3.	Basin to the South2
3.2.4.	Runoff from the West2
3.3.	Onsite Runoff
4. Prop	oosed Runoff Conditions
4.1.	Proposed Runoff Areas
4.2.	Proposed Storm Drain System4
5. Disc	ussion/ Conclusions
6. Refe	erences5

1. Introduction

1.1. Site Description

The proposed Colina Rosa Subdivision is a 94-lot development project proposed in the Washoe County Unincorporated area of southern Reno. The proposed 20.14-acre project is bounded on the north side by Mt. Rose Highway, and on the east by Edmonton Drive (APN's 049-402-02 and 049-402-07). The project is located in the SW ¼ of Section 30, Township 18-N, Range 20-E in Washoe County, Nevada. The location of the project is depicted in figure-1 (vicinity map). The project site consists of two moderately vegetated sage brush vacant lots that have no structures / buildings on site. The project site slopes from the west to the east at approximately a 6% grade and tends to slope to the south at a grade of just under 3%. New storm drain infrastructure is proposed to be included with the project and will tie into the existing Washoe County storm drain system to convey runoff.

2. Procedures

This preliminary report is being written in accordance with the *Washoe County Public Works Design Manual* standards, to determine the drainage requirements of the proposed Colina Rosa Subdivision. A final drainage report is to be completed with the construction documents, submitted for review and approved prior to the recordation of any final subdivision map associated with this project.

2.1. Methodology

Due to the limited size of the contributing runoff areas, the Rational Method was utilized in determining the existing and proposed peak runoff rates. The Rational Method formula is:

$$Q = C * i * A$$

Where: Q = Peak runoff flow (*cubic feet per second (cfs*)) C = Runoff coefficient I = Rainfall intensity (*inches/hour*) A = area (*acres*) A copy of C-values used for calculations is provided in the Appendix.

2.2. Hydraulic Analyses

Due to the preliminary nature of this study and report (no final design or sizing for infrastructure) a hydraulic analysis is not incorporated. A final drainage report is to be completed with the construction documents, submitted for review and approved prior to the recordation of any final subdivision map associated with this project

2.3. Time of Concentration

The time of concentration (t_c) from the site for both the existing and proposed storm water conditions was calculated by determining the greatest travel time for the runoff to flow through the site.

2.4. Flood Zones

The proposed Colina Rosa development is located entirely within FEMA FIRM Map 32031C3245G, and the project lies within the Unshaded Zone X designation, indicating that the property is not within any 100 year floodplain. A copy of the FIRM Panel is provided in the Appendix.

3. Existing Runoff Conditions

3.1. Existing Storm Drain System

There are no available storm drain systems or infrastructure upstream (westerly) of the proposed development site. A 15" Washoe County stormdrain is stubbed to the south east corner of the proposed development. The project proposes discharge into this existing system.

3.2. Adjacent Runoff Areas

All offsite flows contributing to the proposed development are derived from an undeveloped, naturally vegetated, publicly owned hillside to the west. Flows from this basin are of the overland sheet flow variety, and are to be captured on the west edge of the proposed development and conveyed around or through the project.

3.2.1. Basin to the North

Mt. Rose Hwy and the roadside drainage swales along the highway act as a barrier to any offsite drainage that might otherwise drain toward the subject site.

3.2.2. Basin to the East

The proposed development site will drain/discharge in an easterly direction. An existing paved roadway (Edmonton Dr) including curb and gutter exists directly to the east of the project which incorporates an existing 15" storm drain pipe that has been stubbed for our use and will convey flows away from the proposed development and towards larger regional systems. Edmonton Drive as well as the existing storm drain system are public facilities.

3.2.3. Basin to the South

The area to the south of the proposed project is down gradient and consists of existing residential development, which convey storm waters easterly to the existing public storm drainage systems.

3.2.4. Runoff from the West

The area to the west of the proposed project will contribute runoff flows to the proposed Colina Rosa storm drain system. The flows from this area will be captured within an open channel along the westerly boundary of the site and will convey existing storm waters. These storm waters will be split by a highpoint in both existing grade and the proposed open channel, with approximately half the storm water flowing in a northerly direction, while the other half will convey around the site to the south. This area(s) are labelled "OFF-1" and "OFF-2" in Figure 3. The area of this basin consists of an undeveloped, naturally vegetated hillside.

3.3. Onsite Runoff

Pre-development runoff areas and patterns are detailed in Figure 3. The runoff generally flows from the west boundary of the project in a southeasterly direction. The project site has historically been a vacant naturally vegetated lot, the site has not been previously graded. Areas north and south of the property have facilities in place that route drainage away from the project.

The existing peak runoff rates generated from the project and the adjacent contributing runoff area are approximately 4.74-cfs and 30.83-cfs for 5-year and 100-year storm events respectively.

4. Proposed Runoff Conditions

4.1. Proposed Runoff Areas

The proposed runoff boundaries, as well as catch basins and storm drain mains, are detailed in Figure 2. Runoff areas for the site are all included into one sub-areas, although with final design each cul-de-sac street would likely be calculated as a contributing area individually. Because of the preliminary nature of the analysis and report, the developed area was not further subdivided into areas by differences in the point of discharge, as well as differences in on-site or off-site area, or differences in C-value. The off-site area is labelled OFF-1 and runoff from proposed development as sub-areas PRO-1, will be collected by the proposed storm drain system of the development, discharged into detention ponds along Butch Cassidy and/or within proposed open space north of the cul-de-sacs, and then discharge into their natural pattern or to the existing Washoe County storm drain system.

As indicated in Table 1, the proposed runoff areas will generate 4.04-cfs and 9.66-cfs of peak runoff for the 5-year and 100-year storms, respectively.

	COL	T INA ROSA TENT. I EXISTING	ABLE 1 MAP - HYI RUNOFF	DROLOGY RI AREAS	EPORT			
AREA #	RUNOFF COEFFICIENT (c) 5 YEAR	RUNOFF COEFFICIENT (c) 5 YEARRUNOFF COEFFICIENT (c) 100 YEARRAINFALL INTENSITY (i)AREA (A)				RATE OF PEAK RUNOFF (Q)=ciA		
			(INCI	HES/HR)		(FT ³ /SEC)		
	(UNITLESS)	(UNITLESS)	5- YEAR	100- YEAR	(ACRES)	5- YEAR	100- YEAR	
EX-OFF1	0.20	0.50	0.70	1.82	13.74	1.92	12.50	
EX-1	0.20	0.50	0.70	1.82	20.14	2.82	18.33	
				TOTAL =	33.88	4.74	30.83	
C=0.20 & 0.50 (RANGELAND Q5 & Q100) COLINA ROSA TENT. MAP - HYDROLOGY REPORT TIME OF CONCENTRATION = 45 MINUTES								

4.2. Proposed Storm Drain System

The proposed project will uses a combination of open channels, infiltration, swales, detention ponds, and Type 3 and Type 4R catch basins to capture, convey and mitigate post flow increases over historical flow rates. The proposed drainage system will be fully designed and sized with the final production of the civil improvement plans and construction documents, will include a final hydrologic and hydraulic analysis that will be reviewed and approved by Washoe County prior to the recordation of any final subdivision map.

As indicated in Table 2, the proposed runoff areas will generate 8.97-cfs and 36.33-cfs of peak runoff for the 5-year and 100-year storms, respectively.

	TABLE 2 COLINA ROSA TENT. MAP - HYDROLOGY REPORT PROPOSED RUNOFF AREAS											
ADEA #	RUNOFF COEFFICIENT (c) 5 YEAR	OFF ICIENT YEARRUNOFF COEFFICIENT (c) 100 YEARRAINFALL INTENSITY (i)AREA 					UNOFFRUNOFFFFICIENTCOEFFICIENT5 YEAR(c) 100 YEAR		AREA (A)	RATE RU (Q	OF PEAK INOFF I) <i>=ciA</i>	
AREA #		Contract of	(INCI	HES/HR)		(FT ³ /SEC)						
	(UNITLESS)	(UNITLESS)	5- YEAR	100- YEAR	(ACRES)	5- YEAR	100- YEAR					
PRO-OFF 1	0.20	0.50	0.70	1.82	8.87	1.24	8.07					
PRO-OFF2	0.20	0.50	0.70	1.82	4.87	0.68	4.43					
PRO 1	0.50	0.65	0.70	1.82	20.14	7.05	23.83					
				TOTAL =	33.88	8.97	36.33					
	C=0.50 & 0.65 (1/4 ACRE RESIDENTIAL Q5 & Q100) C=0.20 & 0.50 (RANGELAND Q5 & Q100) TIME OF CONCENTRATION = 45 MINUTES											

5. Discussion/ Conclusions

The Colina Rosa subdivision is a proposed 94-lot single-family home development encompassing approximately 20.14 acres in Washoe County, Nevada. The development has been designed to adequately drain, and the storm drain system has been designed to convey the runoff generated from the project.

Off-site runoff will flow to a proposed open channel that will convey runoff away from the project site to existing drainage facilities. On-site runoff through the project will continue to flow southeast through the project and will be restricted by proposed detention ponds, and infiltration.

The proposed improvements will provide more than the required detention and restriction of peak flows from 5-year and 100-year storm events. The proposed release rates of detained water will also be below pre development flow conditions. Overall drainage patterns are not expected to change as a result of the project. The proposed project design conforms to existing county and state regulations.

6. <u>References</u>

- > Washoe County Public Works Design Manual, Section 2 (Storm Runoff) dated January, 2009
- > Truckee Meadows Regional Drainage Manual dated April, 2009

APPENDIX

WASHOE COUNTY HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

Figure 6

RATIONAL FORMULA METHOD RUNOFF COEFFICIENTS

Runoff Coefficients

Land Use or Surface Characteristics	Aver. % Impervious Area	5-Year (C ₅)	100-Year (C ₁₀₀)
Business/Commercial:			
Downtown Areas	85	82	85
Neighborhood Areas	70	.65	.80
Residential:			
(Average Lot Size)			
1/8 Acre or Less (Multi-Unit)	65	.60	78
¹ /4 Acre	38	.50	.65
¹ /3 Acre	30	.45	.60
¹ /2 Acre	25	.40	.55
1 Acre	20	.35	.50
Industrial:	72	.68	.82
Open Space:			
(Lawns, Parks, Golf Courses)	5	.05	.30
Undeveloped Areas:			
Range	0	.20	.50
Forest	0	.05	.30
Streets/Roads:			
Paved	100	.88	93
Gravel	20	.25	.50
Drives/Walks:	95	.87	.90
Roofs:	90	.85	.87
Notes:			1

1. Composite runoff coefficients shown for Residential, Industrial, and Business/Commercial Areas assume irrigated grass landscaping for all previous areas. For development with landscaping other than irrigated grass, the designer must develop project specific composite runoff coefficients from the surface characteristics presented in this table.

VERSION: December 2, 1996

WRC ENGINEERING. INC.

REFERENCE:

USDCM, DROCOG, 1969 (with modifications)

WASHOE COUNTY HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

TIME-INTENSITY-FREQUENCY VALUES FOR ZONE I AND ZONE II

ł

DURATION (minutes)	2-YEAR	5-YEAR	10-YEAR	25-YEAR	50-YEAR	100-YEAR
5	1.58	2.15	2.72	3.67	4.61	5.73
10	1.18	1.60	2.02	2.73	3.42	4.26
15	0.96	1.31	1.65	2.23	2.79	3.48
30	0.66	0.89	1.13	1.52	1.91	2.37
60	0.40	0.54	0.69	0.93	1.16	1.45

PRECIPITATION INTENSITY FOR ZONE II (IN./HOUR) RECURRENCE INTERVAL

DURATION	T					
(minutes)	2-YEAR	5-YEAR	10-YEAR	25-YEAR	50-YEAR	100-YEAR
5	1.98	2.69	3.41	4.59	5.76	7.17
10	1.47	2.00	2.53	3.41	4.28	5.32
15	1.20	1.63	2.06	2.78	3.49	4.34
30	0.82	1.12	1.41	1.90	2.39	2.97
60	0.50	0.68	0.86	1.16	1.46	1.81

 VERSION: December 2, 1996
 REFERENCE:
 TABLE 603

 WRC ENGINEERING, INC.
 TIME-INTENSITY-FREQUENCY VALUES FOR ZONES I AND II
 TABLE 603

Figure 8
WASHOE COUNTY

HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

REGIONAL GROWTH FACTORS

(non-dimensional)

Storm Duration (Hours)				Return Period				
		<u>2-Yr.</u>	<u>5-Yr.</u>	<u>10-Yr.</u>	<u>25-Yr.</u>	<u>50-Yr.</u>	<u>100-Yr.</u>	
	1	1.0	1.36	1.72	2.32	2.91	3.62	
	6	1.0	1.30	1.52	1.81	2.04	2.26	
	24	1.0	1.28	1.50	1.79	2.01	2.22	

Figure 9

TRAVEL TIME VELOCITY

PRELIMINARY SANITARY SEWER REPORT

TO SUPPORT THE

COLINA ROSA TENTATIVE MAP

PREPARED FOR:

TOWNE DEVELOPMENT OF SACRAMENTO, INC. 11060 WHITE ROCK ROAD, SUITE 150 RANCHO CORDOVA, CA 95670

PREPARED BY:

JOB #: KLS.011 DATE: 1/15/2016

TABLE OF CONTENTS

1.	Introduction1				
2.	. Methodology				
3.	Existing Sanitary Sewer System1				
3	.1.	Existing Infrastructure	L		
3	.1.	Existing Capacity	L		
4.	1. Proposed Sanitary Sewer System				
4	.1.	Sanitary Sewer Mains and Laterals)		
4	.1.	Sanitary Sewer Demands	2		
5. Discussion/ Conclusions					

1. Introduction

This preliminary sanitary sewer report is to support the tentative map for the proposed Colina Rosa Subdivision (CRS). The CRS is proposed to be a 94-lot subdivision located at the southwest corner of the intersection of Mount Rose Highway (SR 431) and Edmonton Drive. The project is comprised of 2-existing parcels (Assessor Parcel Numbers (APNs) 049-402-02 and 049-402-07) totaling ± 19.13 -acres. The project is located in Tonwship 18 North, Range 18 East in Section 30. The location of the project is presented in Figure 1 (Vicinity Map).

2. <u>Methodology</u>

Sanitary sewerage flows were estimated utilizing the design criteria in Chapter 2 (Gravity Sewer Collection Design Standards) of the Washoe County Department of Water Resources, Engineering Design Standards. Average flows for a residence (DU) was estimated at 270-gallons/day. Commercial zoned properties were assumed to generate an average daily flow of 780-gallons/day/acre. A peaking factor of 3 was utilized to estimate peak flows. Although the majority of the commercial zoned property is currently vacant, build out of these areas was assumed for this report.

The high school was assumed to generate a peak sewage flow of 3,200-gallons/acre/day. The Manning's equation was utilized with a roughness coefficient (*n*) of 0.012 for the PVC pipes to determine the capacities of the sanitary sewer mains.

3. Existing Sanitary Sewer System

3.1. Existing Infrastructure

The project will connect to the existing 8-inch diameter sanitary sewer stub that extends west from the intersection of Edmonton Drive and Butch Cassidy Drive. The existing sanitary sewer system will convey sewage from this point to the existing 15-inch diameter sanitary sewer trunk main located on the north side of Mount Rose Highway in Sundance Drive. The approximate alignment of the existing sanitary sewer system that will convey sewage from the proposed Colina Rosa Subdivision to the existing 15-inch diameter trunk main is presented in Figure 2. All of the existing sanitary sewer mains indicated are 8-inch in diameter unless noted otherwise.

3.1. Existing Capacity

The Washoe County recorded As Built Plans for the existing sanitary sewer mains were reviewed between the proposed point of connection in Edmonton Drive to the existing 15-inch diameter trunk main located in Sundance Drive to locate any potential conveyance issues. Two locations in Bozeman Drive and De Spain Lane were identified as two areas that might have potential conveyance issues. The existing 10-inch diameter sanitary sewer main in Bozeman Drive was built at a 0.004-ft/ft (0.4%) slope. The existing 8-inch diameter sanitary sewer main in De Spain Lane was constructed at 0.0125-ft/ft (1.25%). The 10-inch diameter sanitary sewer main in

Bozeman Drive and the 8-inch diameter sanitary sewer main in De Spain Lane have ½ full conveyance capacities of 0.485-MGD and 0.4729-MGD respectively.

4. <u>Proposed Sanitary Sewer System</u>

4.1. Sanitary Sewer Mains and Laterals

The proposed sanitary sewer system will be comprised of 8-inch diameter SDR 35 PVC with slopes mostly ranging between 3% to \pm 7%. Each house will utilize a 4-inch diameter sanitary sewer lateral constructed at a minimum slope of 2%. All of the proposed sanitary sewer mains will be publicly owned and maintained by the Washoe County Department of Water Resources. The proposed sanitary sewer system will convey sewage southerly along the 5-proposed cul-de-sacs to the proposed sanitary sewer main to be built along the southern boundary of the site. Sewage from the 5-proposed cul-de-sac will be conveyed easterly in this main to the existing sanitary sewer manhole located at the intersection of Edmonton and Butch Cassidy Drive.

4.1. Sanitary Sewer Demands

Sanitary sewer demands were estimated utilizing the criteria listed in Section 2 of this report. The 8-inch diameter sanitary sewer main in De Spain Lane will convey sewage from approximately 499-DUs, 17.6-acres of commercial zoned property and the 66.85-acre Galena High School. The following calculations were utilized in estimating the peak sewage to be generated from the existing and proposed properties:

499-EXISTING AND PROPOSED DUS

(499-DUs)*(270-gallons per day per capita)*(3)=404,190-gpd (0.404-MGD)

17.6-ACRES COMMERCIAL PROPERTY

(17.6-acres)*(780-gallons per day per acre)*(3)=41,184-gpd (0.041-MGD)

66.85-ACRES PUBLIC FACILITY

(66.85-acres)*(3,200-gallons per day per acre)=213,920-gpd (0.214-MGD)

TOTAL PEAK DEMAND=±0.659-MGD

As summarized above the existing and proposed peak demand to be placed on the existing 8inch diameter sanitary sewer main is estimated at 0.659-MGD. As previously discussed, the flattest pipe (1.25%) in De Spain Lane has a ½ full conveyance capacity of approximately 0.473-MGD. If the estimated peak flow was to occur in this pipe; the pipe would be approximately 62% full during peak flow conditions. This sanitary sewer main has an estimated conveyance capacity of approximately 0.946-MGD flowing full.

The existing 10-inch diameter sanitary sewer main in Bozeman previously discussed is upstream of the existing commercial areas, some of the DUs and the Galena High School. An estimated

431-DUs are conveyed in this sanitary sewer main which generates 404,190-gpd (0.404-MGD) of sewage which is less than the ½ full capacity estimated for this main (0.485-MGD).

5. <u>Discussion/ Conclusions</u>

Colina Rosa Subdivision will add 94-homes to the existing sanitary sewer system. These additional sewage flows will be conveyed by from Edmonton Drive through the existing sanitary sewer system to the existing 15-inch diameter trunk main located in Sundance Drive. The currently vacant commercial areas were assumed developed for a more conservative estimate of peak flows. The peak flows to be generated by the homes, commercial areas and the high school were assumed to occur simultaneously although it is anticipated that peak flows from these different source types would occur at completely different times.

With the conservative assumptions listed above, the only sanitary sewer main existing or proposed estimated to flow over $\frac{1}{2}$ full is the one located in De Spain Lane. However, this existing sanitary sewer main would only be approximately 62% full with a remaining capacity to convey an additional ±0.29-MGD. Therefore, no adverse effects are anticipated to the existing sanitary sewer system with the development of this project.

REFERENCES

Washoe County Department of Water Resources, Engineering Design Standards, Section 2 (Gravity Sewer Collection Design Standards) dated May, 2010

GEOTECHNICAL FEASIBILITY STUDY

PROPOSED

COLINA ROSA RESIDENTIAL DEVELOPMENT

Washoe County Assessor's Office Parcel Numbers 049-402-02 and -07

Mt. Rose Highway Area

WASHOE COUNTY, NEVADA

Prepared for:

TEC Civil Engineering Consultants 9480 Double Diamond Parkway, Suite 200 Reno, Nevada 89521

Attention: Jason Gilles, President

January 11, 2016

Project No. 16.142.02-G

January 11, 2016 Project No. 16.142.02-G

TEC Civil Engineering Consultants 9480 Double Diamond Parkway, Suite 200 Reno, Nevada 89521

Attn: Jason Gilles, President

Re: Geotechnical Feasibility Study, Proposed Colina Rosa Residential Development, Washoe County Assessor's Office Parcel Numbers 049-402-02 and -07, Mt. Rose Highway area of Washoe County, Nevada

Dear Mr. Gilles:

Axion Geotechnical is pleased to present results of a geotechnical feasibility study our firm conducted at the property. Based on results of our study, experience in the area, and understanding of proposed development, we conclude that, from a preliminary geotechnical standpoint, the property is suitable for single-family residential development. The primary geotechnical concerns are the potential presence of **over-size aggregate**, **bedrock**, and **expansive clay**, and **steepness of slope**.

We appreciate having been selected to prepare this study and trust results fulfill your needs. If you or your design consultants have questions, please do not hesitate to contact us at (775) 771-2388.

Respectfully,

AXION GEOTECHNICAL, LLC

Chris D. Betts

Chris D. Betts, P.E. President

TABLE OF CONTENTS

I INTRODUCTION	1
II SITE AND SOIL CONDITIONS	2
III GEOLOGIC AND SEISMIC CONSIDERATIONS	5
 A. Geology and Faulting B. Liquefaction C. Slope Stability D. Radon E. Flooding 	5 5 6 6
IV OPINIONS AND DISCUSSIONS	6
V REFERENCES	9
VI DISTRIBUTION	10

TEC Civil Engineering Consultants Geotechnical Feasibility Study - Project No. 16.142.02-G Proposed Colina Rosa Residential Development APNs 049-402-02 and -07 – Mt. Rose Highway area of Washoe County, Nevada January 11, 2016 Axion Geotechnical, LLC 681 Edison Way Reno, Nevada 89502 (775) 771-2388

I INTRODUCTION

Axion Geotechnical is pleased to present results of a geotechnical feasibility study our firm conducted for the proposed Colina Rosa residential development. The 20.13-acre combined parcels are Washoe County Assessor's Office Parcel Numbers 049-402-02 and -07 (Property) and are at the southwest corner of Mt. Rose Highway (State Route 431) and Edmonton Drive. Conceptual plans are not available at this time; however, we understand development will include construction of individual lots for single-family residences serviced by community water, sewer and storm drain systems. The structures will have one to two levels, will be wood-framed, and supported with shallow conventional spread foundations. Dedicated service streets will be surfaced with asphaltic concrete.

We have not received information concerning anticipated foundation loads; however, we anticipate maximum wall loads will be on the order of 1.5 kips per foot (dead plus live plus snow load), and that maximum column loads will be less than five kips (dead plus live plus snow load). For frost protection, perimeter foundations will bottom at least 24 inches below lowest adjacent exterior ground surface. Structural design will follow criteria outlined in the 2012 International Residential Code.

We have not received civil design plans; however, we anticipate earthwork necessary to create proposed grades and for proper site drainage will result in cuts and fills from two to five feet. New slopes will be constructed at final inclinations of two horizontal to one vertical (2H:1V) or flatter. Site retaining walls are anticipated. Depth of utility trenches should be less than eight feet. We assume underground utilities in proposed structural areas will be abandoned or relocated. Earthwork will be performed in accordance with the 2012 *International Building Code*, and the 2012 *Standard Specifications for Public Works Construction* (Regional Transportation Commission).

The purpose of our work was to perform a site reconnaissance and review available literature and maps to provide opinions and discussions concerning the geotechnical suitability of the Property for its intended use. Once design parameters, such as building locations, finish floor elevations, foundation loads and proposed grading are known; a design-level geotechnical investigation report with detailed information of the subsurface soil conditions and recommendations for design and construction must be performed.

This report is preliminary and geotechnical in nature and not intended to identify other potential site constraints such as environmental hazards, wetlands determinations or the potential presence of buried utilities. Opinions and discussions included in this report are specific to development at the Property and are not intended for off-site development.

TEC Civil Engineering Consultants Geotechnical Feasibility Study - Project No. 16.142.02-G Proposed Colina Rosa Residential Development APNs 049-402-02 and -07 - Mt. Rose Highway area of Washoe County, Nevada January 11, 2016 Axion Geotechnical, LLC 681 Edison Way Reno, Nevada 89502 (775) 771-2388

II SITE AND SOIL CONDITIONS

The Property is undeveloped and vacant. Review of images available on Google Earth reveals the Property has been undeveloped and vacant dating back to 1994, the oldest image available. The Property is bordered by undeveloped hillside to west, single-family residences to the south, Mt. Rose Highway to the north and Edmonton Drive to the east. The Property is approximately three to five feet higher in elevation than adjacent development, grades gently to moderately downward from the northwest to the southeast, and is covered by dense sagebrush and weeds. Boulders, some up to 10 feet in diameter, are present, a billboard is at the northeast corner, and electrical panels/boxes are at the southeast corner. A jeep trail cross along the southern boundary in an east-west direction.

View of Property on Google Earth

View of Property from east to west at Edmonton Drive

Axion Geotechnical, LLC 681 Edison Way Reno, Nevada 89502 (775) 771-2388

Based on the United States Geological Survey 7.5-Minute topographic map of the Mt. Rose Quadrangle, the site is in the SW ¼ of Section 30, Township 18 North, Range 20 East, and elevation is between about 5,000 and 5,100 feet relative to mean sea level.

According to sheet 27 of the *Soil Survey of Washoe County, Nevada, South Part*, the Property is predominantly underlain by Leviathan extremely stony sandy loam, 2 to 8 percent slopes (# 559); however, a small amount of Old Camp stony sandy loam, 15 to 30 percent slopes (#930) is mapped at the southwestern corner.

Soil Map

These soil survey units are described as follows:

Leviathan extremely stony sandy loam, 2 to 8 percent slopes (# 559): This very deep, well-drained soil is on terraces. It formed in alluvium from mixed rock sources. Elevation is 4,800 to 6,000 feet. Typically, the surface layer is grayish brown extremely stony sandy loam about 11 inches thick. The subsoil to a depth of 60 inches is brown very gravelly sandy clay loam. Permeability is moderately slow. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight. The hazard of soil blowing is slight. Limitations for shallow excavations are moderate due to large stones. Limitations for dwellings with or without basements are moderate due to shrink-swell. Limitations for local roads and streets are moderate due to frost action and shrink-swell. Limitations for septic tank absorption fields are severe due to slow percolation rates. The shrink-swell potential is low to moderate. The frequency of flooding is none. Depth to high water table is greater than 6.0 feet. Depth to bedrock is

greater than 60 inches. The potential frost action is moderate. The risk of corrosion to steel is moderate, and to concrete it is low. The main limitations associated with use of this unit for urban development, as described by the soil survey, are the moderate shrink-swell potential associated with high clay content, moderately slowly permeable subsoil, and susceptibility to frost heaving.

Old Camp stony sandy loam, 15 to 30 percent slopes (#930): This shallow, welldrained soil is on uplands. It formed in residuum derived dominantly from volcanic rocks. Elevation is 4.500 to 6.000 feet. Typically, 1 to 3 percent of the surface is covered with stones. The surface layer is pale brown stony sandy loam about 7 inches thick. The subsoil is brown very cobbly clay loam about 10 inches thick. Hard andesite bedrock is at a depth of 17 inches. Depth to hard bedrock ranges from 10 to 20 inches. Permeability is moderately slow. Effective rooting depth is 10 to 20 inches. Runoff is rapid, and the hazard of water erosion is moderate. The hazard of soil blowing is slight. Limitations for shallow excavations are severe due to depth to rock, presence of large stones, and slope. Limitations for dwellings with or without basements are severe due to slope, depth to rock, and large stones. Limitations for local roads and streets are severe due to slope, depth to rock, and large stones. Limitations for septic tank absorption fields are severe due to slope, depth to rock, and large stones. The shrinkswell potential is low to moderate. The frequency of flooding is none. Depth to high water table is greater than 6.0 feet. Depth to bedrock is 10 to 20 inches. Hardness of bedrock is hard. The potential frost action is moderate. The risk of corrosion to steel is high, and to concrete it is low. The main limitations to use of this soil for urban development, as defined by the soil survey, are the steepness of slopes, presence of stone, and the shallowness of soil over bedrock.

According to geologic mapping by H. F. Bonham and David K. Rogers, 1983, materials underlying the site consist predominantly of Pleistocene-age Tahoe outwash (Qtm) and a small amount of Miocene-age Kate Peak Formation (Tkf). These units are described as follows:

<u>Quaternary-age Tahoe Outwash-Mount Rose Fan Complex (Qtm)</u>: Glacial outwash stream deposits of volcanic and granitic composition; light yellowish- to orange-brown; sandy large cobble to boulder gravel containing characteristically fresh granitic lag gravel. There is a strongly developed 3 feet thick soil profile; a dark yellowish-brown, prismatic argillic B-horizon; typically no siliceous or calcic duripan development; and granitic boulders are partly to thoroughly decomposed where buried in soil. Deposits locally are only thin veneers; some undifferentiated areas.

<u>Miocene-age Kate Peak Formation (Tkf)</u>: Horblende-pyroxene and esite and dacite flows with minor breccia and volcanic conglomerate.

III GEOLOGIC AND SEISMIC CONSIDERATIONS

To evaluate potential geological hazards at the Property, our study included a site reconnaissance and review of available literature and maps.

A. Geology and Faulting

The Property is in the western portion of the Truckee Meadows, a structural basin surrounded by Peavine Mountain, Steamboat Hills, the Virginia Range and the Sierra Nevada to the north, south, east and west, respectively. The basin is transitional between the Basin and Range physiographic province to the east and the Sierra Nevada to the West. The geologic structure of the area is characterized by high-angle extensional normal faults trending in a north-northeast direction. The Truckee Meadows is a down-dropped graben with neighboring horsts to the east and west.

According to mapping by Gail Cordy Szecsody (*Mt. Rose NE Quadrangle Earthquake Hazards Map,* Nevada Bureau of Mines and Geology, dated 1983), no faults cross the Property. According to the Unites States Geological Survey (USGS) Earthquake Hazards Program (Quaternary Faults in Google Earth), no faults cross the site. The database indicates that the nearest Holocene to latest Pleistocene fault (younger than 15,000 years old) is located approximately 0.6 miles west of the Property.

Based on the Nevada Seismological Laboratory website the nearest principal Quaternary-age fault is the Mt. Rose fault zone. The Nevada Seismological Laboratory indicates an earthquake of magnitude 7.1 is possible along this fault zone (*Reno/Carson Fault Information*, updated January 31, 2003).

B. Liquefaction

Liquefaction, a loss of soil shear strength, is a phenomenon associated with loose saturated granular deposits subjected to strong earthquake shaking. Liquefaction can result in unacceptable movement of foundations. Although a detailed assessment should be considered during a design-level geotechnical investigation, the anticipated shallow-depth to bedrock suggests the Property is not susceptible to liquefaction.

C. Slope Stability

Based on the anticipate stable nature of the underlying materials and our anticipation that slopes will be shallow and constructed at final inclinations of two horizontal to one vertical (2H:1V) or flatter, that earth retaining walls are proposed, we do not believe rock falls or landslides will impact the Property.

TEC Civil Engineering Consultants Geotechnical Feasibility Study - Project No. 16.142.02-G Proposed Colina Rosa Residential Development APNs 049-402-02 and -07 – Mt. Rose Highway area of Washoe County, Nevada January 11, 2016 Axion Geotechnical, LLC 681 Edison Way Reno, Nevada 89502 (775) 771-2388

D. Radon

Radon, a colorless, odorless, radioactive gas derived from the natural decay of uranium, is found in nearly all rocks and soils. The Environmental Protection Agency (EPA) suggests that remedial action be taken to reduce radon in any structure with average indoor radon of 4.0 picocuries per liter (pCi/L) or more. Based on *Radon in Nevada* (Rigby *et al.*, Nevada Bureau of Mines and Geology, Bulletin 108, 1994), the Property, as well as much of northern Nevada, is in an area where average indoor radon concentrations could exceed 4.0 (pCi/L).

E. Flooding

The Federal Emergency Management Agency flood map (FEMA-Map 32031C3245G, revise date of March 16, 2009) shows the Property in Flood Hazard Zones X unshaded. According to FEMA, these are areas determined to be outside the 0.2% annual chance floodplain.

IV OPINIONS AND DISCUSSIONS

Based on results of our study, experience in the area, and understanding of proposed development, we conclude that, from a preliminary geotechnical standpoint, the Property is suitable for single-family residential development. The primary geotechnical concerns are the potential presence of **over-size aggregate**, **bedrock**, and **expansive clay**, and **steepness of slope**.

The Property is potentially underlain by over-size aggregate such as gravel, cobbles and boulders. Consideration should also be given to the presence of over-size aggregate which will be generated during earthwork operations, and the subsequent reduction of material available for reuse as fill. Screening of over-size aggregate will be required. Over-size aggregate could require off-hauling or that fill material be imported to balance earthwork quantities to attain grades. If over-size aggregate is proposed for use as fill, large equipment will be needed to properly place and compact rock fills. Compaction approval during the placement of rock fills can only be achieved based on visual performance specifications established by the Geotechnical Engineer, which will increase on-site inspection time and increase cost of inspection services. The removal of large cobbles or boulders will result in undercutting of excavation sidewalls and resulting trench widths will be increased. If over-size aggregate is placed near foundations, footings may need to be formed.

Oversize aggregate will affect difficulty of grading and trenching associated with cobbles and boulders. A leveling course could be required to provide a smooth finished surface. Although we believe that, overall, the underlying materials can be excavated with a Caterpillar 336 excavator and Caterpillar D8N Dozer or equivalent equipment and that blasting will not be necessary, as is inherent with over-size aggregate, areas of resistant material will be encountered which will require use of special equipment such as a hydraulic rock hammer.

Bedrock could be encountered near the southwest corner of the Property. Consideration should be given to the difficulty of grading and trenching associated with bedrock. Although we do not believe that blasting will be necessary for excavations limited to the upper 10 feet, as is inherent with bedrock, localized areas of resistant material may be encountered which will require the use of special equipment such as a hydraulic rock hammer.

Clay soils can exhibit a potential for expansion. Expansive soils are subject to substantial volume changes (shrink and swell) with changes in moisture content. Changes in moisture content can occur as a result of seasonal variations in precipitation, landscape irrigation, broken or leaking water pipes and sewer lines, and poor site drainage. These volume changes can cause differential movements (settlement or heave) of foundations, slabs-on-grade, exterior flatwork such as walkways, stoops and patios, and pavement sections.

The typical method to reduce potential movement is to remove (over-excavate) the expansive material to a sufficient depth and replace it with approved compacted fill, thereby reducing the thickness of the expansive layer, providing surcharge, and maintaining moisture at a near constant level. In conjunction with over-excavation and filling, moisture conditioning of the exposed materials to a slightly over optimum moisture content will be needed during construction.

In addition to their expansive characteristics, expansive materials also exhibit a lower Resistance Value and Modulus of Subgrade Reaction (k) than granular material. To reduce the thickness of aggregate base and to minimize future maintenance in slab-on-grade, exterior flatwork and pavement areas, portions of these soils would require removal and replacement with approved compacted fill subbase.

Clay soils also inhibit achieving uniform moisture content and impede compaction efforts. Consideration should be given to time constraints associated with scarification, moisture conditioning, drying and compacting clay soils. During periods of inclement weather, water may also become perched on clay soil, resulting in a saturated condition for prolonged periods and creating additional limitations on equipment mobility. Consideration should be given to the necessity for maintaining moisture to prevent wind erosion and for controlling dust during earthwork operations.

As moderate relief exists across the Property, consideration should be given to increased earthwork which will be needed to attain level pads, for site access and for proper site drainage. Sloping terrain can lead to differential settlement as transition zones will occur where the structure is supported on a combination of cut native soil and compacted fill material. The creation of slope set-backs will reduce the amount of property available for development.

Studies regarding the presence of radon gas suggest the Property, as well as much of northern Nevada, is in an area which could exceed the action levels established by the Environmental Protection Agency. Determinations regarding the potential presence of radon gas should be considered prior to site development.

TEC Civil Engineering Consultants Geotechnical Feasibility Study - Project No. 16.142.02-G Proposed Colina Rosa Residential Development APNs 049-402-02 and -07 – Mt. Rose Highway area of Washoe County, Nevada January 11, 2016

The soil survey suggests that slow percolation rates, susceptibility to frost heaving, and corrosion potential for uncoated steel or metal may be an additional constraints associated with the native soils. Based on our understanding that the Property will be serviced by community water, sewer and storm drain systems, we do not believe slow percolation rates will impact the site. Consideration, however, should be given to performing infiltration tests if retention basins are proposed. Based on our anticipation that footings, slabs, exterior flatwork and pavement sections will be supported on approved compact granular material; that foundations will bottom below the design frost depth; and that proper site drainage will be provided, we do not believe frost heave will adversely impact site development. Based on our experience in the area, we believe that adequate corrosion mitigation can be attained through use of properly prepared and placed Type II portland cement concrete, and by maintaining a minimum three-inch concrete cover where reinforcing steel or other metal is in close proximity to native soils.

Moderate vegetation is present across the Property. Consideration should be given to the increased construction costs associated with clearing and stripping of these materials, and associated material volume loss.

V REFERENCES

American Concrete Institute, *Building Code Requirements for Reinforced Concrete* (ACI 318-11), dated 2012.

Bonham, H. F. Jr. and Rogers, David K. *Mt. Rose NE Quadrangle Geologic Map.* Reno: Nevada Bureau of Mines & Geology, University of Nevada, Reno, 1983.

Federal Emergency Management Agency, U.S> Department of Homeland Security, *FEMA's Flood Map Service Center* (https://msc.fema.gov/portal).

International Code Council 2012 International Residential and Building Codes, Whittier: International Code Council, Inc., 2012.

Lieberman, P. Accelerated Corrosion Tests for Buried Metal Structures. Pipeline and Gas Journal, October, 1996.

Regional Transportation Commission of Washoe County. *Standard Specification for Public Works Construction*. Reno: Regional Transportation Commission of Washoe County, 2012.

Rigby, James G., Jonathan G. Price, Lindsay G. Christensen, Daphne D. La Pointe, Alan R. Ramelli, Mario O. Desilets, Ronald H. Hess, and Stanley R. Marshall. *Radon in Nevada*. Reno: Nevada Bureau of Mines & Geology, Bulletin 108, University of Nevada, Reno, 1994.

Szecsody, Gail Cordy. *Mt. Rose NE Quadrangle Earthquake Hazards Map.* Reno: Nevada Bureau of Mines & Geology, University of Nevada, Reno, 1983.

United States Department of Agriculture, Soil Conservation Service. Soil Survey of Washoe County, Nevada, South Part. Washington: U.S. Government Printing Office, 1980.

United States Department of the Interior Geological Survey. *Mount Rose NE Quadrangle*. 7.5-minute series map (topographic). 1:24,000. Denver: USGS, 1994.

TEC Civil Engineering Consultants Geotechnical Feasibility Study - Project No. 16.142.02-G Proposed Colina Rosa Residential Development APNs 049-402-02 and -07 – Mt. Rose Highway area of Washoe County, Nevada January 11, 2016 Axion Geotechnical, LLC 681 Edison Way Reno, Nevada 89502 (775) 771-2388

VI DISTRIBUTION

Unbound original, two bound wet-stamped copies and one .pdf to:

TEC Civil Engineering Consultants 9480 Double Diamond Parkway, Suite 200 Reno, Nevada 89521 Attention: Jason Gilles, President Telephone: (775) 352-7800 Facsimile: (775) 352-7929

Appendix B – Plan Sets

Appendix B - Plan Sets:

Civil Plan and Landscape Plan Sets (6 sheets)

- 1: Preliminary Site Plan
- 2: Preliminary Grading Plans
- 3: Preliminary Utility Plan
- 4: Cross Sections

Landscape Architecture Plan Set (2 sheets)

- 5: Preliminary Landscape Plan
- 6:: Details & Notes

50' 100

COLINA ROSA TENTATIVE MAP

TOWNE DEVELOPMENT OF SACRAMENTO, INC 11060 WHITE ROCK ROAD, SUITE 150 RANCHO CORDOVA, CA 95670

TEC CIVIL ENGINEERING CONSULTANTS 9480 DOUBLE DIAMOND PARKWAY, SUITE 200

1	••••	PRELIMINARY LOT & BLOCK PLAN
2	••••	PRELIMINARY GRADING PLAN
3	•••••	PRELIMINARY UTILITY PLAN
4	•••••	PRELIMINARY CROSS SECTIONS
5	•••••	PRELIMINARY LANDSCAPE PLAN
6		LANDSCAPE DETAILS AND NOTES

TOTAL NUMBER OF LOTS			94
LOT AREA14 RIGHT-OF-WAY/ COMMON AREA	4.75 5.64 .75	AC AC AC	RES RES RES
TOTAL SITE AREA 20).14	AC	RES
SMALLEST LOT SIZE LARGEST LOT SIZE AVERAGE LOT SIZE	5,26 8,68 6,83	51 30 50	S.F. S.F. S.F.

CABLE	CHARTER COMMUNICATIONS
ELECTRIC	NV ENERGY
GAS	NV ENERGY
SANITARY SEWER	WASHOE COUNTY
	WASTEWATER PLANT
SOLID WASTE	WASTE MANAGEMENT
TELEPHONE	AT&T
WATER TRUCKEE M	IEADOWS WATER AUTHORITY

MAP

1"=50' KLS.011

SCALE: JOB #: ENGINEERING CONSULTANTS

9480 DOUBLE DIAMOND PARKWAY, STE 200 RENO, NEVADA 89521 PH (775) 352-7800 ~ FAX (775) 352-7929

1) REF. SHEET 2 FOR TYPICAL STREET CROSS SECTION.

50' 25'

COLINA ROSA TENTATIVE MAP

COLINA ROSA TENTATIVE MAP

	PROPERTY B
	A.C. PAVEME
	CONCRETE A
/15"SD	STORM DRAIN (DASHED IF
<u>8"SS</u>	SANITARY SE (DASHED IF
8" W	HIGHER PRES DIAMETER (D.
——8" W——	LOWER PRES DIAMETER (D.
	PRESSURE R (HOLLOW IF
۲	MANHOLE (H
-	PROPOSED T
	PROPOSED L
	PROPOSED R
	FLOW LINE T
50	LOT NUMBER
(e)	EXISTING

PROPERTY BOUNDARY			
A.C. PAVEMENT AREA			
CONCRETE AREA			
STORM DRAIN MAIN DIRECTION w/ DIAMETER (DASHED IF EXISTING)			
SANITARY SEWER MAIN DIRECTION w/ DIAMETER (DASHED IF EXISTING)			
HIGHER PRESSURE ZONE WATER MAIN AND DIAMETER (DASHED IF EXISTING)			
LOWER PRESSURE ZONE WATER MAIN AND DIAMETER (DASHED IF EXISTING)			
PRESSURE REDUCING STATION (PRS) (HOLLOW IF EXISTING)			
MANHOLE (HOLLOW IF EXISTING)			
PROPOSED TYPE 4R CATCH BASIN			
PROPOSED LOT LINE			
PROPOSED RIGHT OF WAY LINE			
FLOW LINE TO SD INLETS			

LEGEND

50'25'0

EITVIL ENGINEERING CONSULTANTS 9460 DUULE DIAMON PAKTAT, STE 200 RENO, NYADA 69521 PH (775) 352-7800 ~ PAX (775) 352-7829

DATE: SCALE: JOB #:

NOTE:

BY WASHOE COUNTY

1) ALL PROPOSED SANITARY SEWER MAINS TO BE OWNED AND MAINTAINED BY WASHOE COUNTY

2) ALL PROPOSED WATER MAINS TO BE OWNED AND MAINTAINED BY TMWA

3) ALL PROPOSED STORM DRAIN FACILITIES WITHIN THE RIGHT OF WAY TO OWNED AND MAINTAINED

COLINA ROSA TENTATIVE MAP

CROSS SECTION A-A

TENTATIVE MAP

PRELIMINARY CROSS SECTIONS SHEET 4 of 6

HORIZONTAL SCALE 1"=50' VERTICAL SCALE 1"=10'

NOTES:

- 1) ALL STREETS WITHIN THE TENTATIVE MAP ARE PROPOSED PUBLIC.
- 2) REFERENCE THE GRADING PLAN FOR CROSS SECTION LOCATIONS.

1/15/15 KLS.011

50' 25' 0 50' 100

COLINA ROSA TENTATIVE MAP

_____SIDE__OR _____REAR__YARD____

6' FENCE WITH-

-EVERGREENS/BOULDERS/ COBBLE WITH GRADE CHANGE

PILASTERS

PLANTER-

AND SHRUBS

HOUSE

ENTRY ENLARGEMENT

COLINA ROSA TENTATIVE MAP

Colina Rosa Plant List

Screen plantings at the Mt. Rose Highway, Edmonton Drive and Butch Cassidy Drive, with drip irrigation

Trees

- 1. Pinus nigra Austrian Pine
- 2. Pinus jeffreyi Jeffrey Pine
- 3. Pinus sylvestri s– Scotch Pine
- 4. Malus sp. Crabapple
- 5. Prunus virginiana Purple Chokecherry

Shrubs

- 1. Caragana sp. Peashrub
- 2. Buddleia alternifolia Butterfly Bush
- 3. Rhus typhina Staghorn Sumac
- 4. Perovskia atriplicifolia Russian Sage
- 5. Caryopteris clandonensis Bluebeard
- 6. Artemesia tridentata v. vaseyana Mountain Big Sage

Interior common open space plants, with drip irrigation

Trees

- 1. Pinus flexilis 'Vanderwolf' Vanderwolf Pine
- 2. Acer rubrum Red Maple
- 3. Koelreuteria paniculata Golden Rain Tree
- 4. Calocedrus decurrens Incense Cedar

Shrubs

- 1. Forestiera neomexicana New Mexico Privet
- 2. Forsythia intermedia Forsythia
- 3. Panicum virgatum Switch Grass
- 4. Viburnum dentatum Arrowood
- 5. Yucca filamentosa Adam's Needle
- 6. Lavendula angustifolia Lavender
- 7. Ribes aureum Golden Current
- 8. Symphoricarpos albus Snowberry

Common area plantings at disturbed areas around the project perimeter edges, without drip irrigation. An emphasis is placed on plants for erosion control and lower flammability risk.

Plants will be seeded in these areas will a drill seeder and hydroseeded in the less rocky areas.

Botanical Name	Common Name/Variety
Achillea millefolium	Yarrow
Achnatherum occidentalis	Western needlegrass
Artemisia tridentata ssp vaseyana	Mtn. sagebrush
Bromus carintaus	California brome
Elymus elymoides	Blue wildrye 'Stanislaus'
Elymus trachycaulus	Slender wheatgrass, 'Pryor'
Ericameria nauseosa	Rubber rabbitbrush
Poa secunda	Sandberg bluegrass 'Sherman'
Purshia tridentata	Bitterbrush

All dead plants and branches to be removed from these areas and the cheatgrass eliminated before the seeding completed in the late fall. Disturbed areas to be loosened and left in a rough condition. Cleared brush and topsoil from the home lots to be re-used for re-vegetation of the disturbed open spaces.

Washoe County Landscape Compliance and Applicability

Water Conservation compliance with Section 110.412.20

- 1. The design proposes no lawn and the use of water conserving plant material.
- 2. Plants to be grouped in hydrozones for water use.

1. At the perimeter of the subdivision a minimum of 1 tree per 50 lineal feet is shown on the plan for arterials and collector streets.

Planting Standards compliance with Section 110.412.60

1. Climate adapted plants are shown in the planting legend.

2. Plants are compatible with the surrounding area – native plants are proposed to be extended into the site at the Mt. Rose Hwy, since they exist out to the edge of the right of way, south side of the highway. Planting types along both Edmonton and Butch Cassidy Drives are similar to those existing near the site, which include both native and ornamental types with evergreen accents.

- 3. Planting water use zones are compatible with the upland type plants in the area.
- 4. Evergreen trees proposed to be one-half 7 ft. tall and the remainder 5 ft. tall.
- 5. Deciduous trees proposed to be one-half 2" caliper and the remainder 1" caliper sizes.

6. Shrubs proposed to be a mixture of sizes between #1 and #5, depending on plant type, growth rate and availability.

- 8. Common area landscape maintenance to be the responsibility of the HOA.
- Compliance with Article 204 Forest Area Section 110.204.05.c
- Highway. The proposed fence with pilasters is 6 ft. tall at the edge of the setback.

north side of the Mt. Rose Hwy.

ENTRY SIGN ON BOULDER

3. Mulches to be used include screened on-site rock or imported rock types for slopes.

4. Soil amendments to be included into the plant pits in final design with soil testing.

Residential Use types compliance with Section 110.412.35

7. Irrigation will be automatic, with main lines, valves and controllers for common area landscape.

1. Setback – A setback of 30 ft. is shown along the north side of the site, adjacent to the Mt. Rose

2. The setback area is landscaped per the plan and section A-A. Landscaping to be similar to that on the

3-RAIL SPLIT CEDAR FENCING 3.5 FT. TALL AT ENTRY AREAS

FENCING BETWEEN LOTS AND SIDE YARDS

FENCING BETWEEN LOTS **ON NORTH/SOUTH SLOPES**

FENCING WITH PILASTERS ALONG MT. ROSE HWY

